EEA Technical report No 11/2011

Approximated EU GHG inventory:

Early estimates for 2010

7 October 2011

Contact persons	Ricardo Fernandez
	European Environment Agency (EEA)
	Ricardo.fernandez@eea.europa.eu
	Anke Herold
	Oeko Institut - EEA's European Topic Centre on Air Pollution and Climate Change Mitigation (ETC/ACM)
	a.herold@oeko.de

Content

nowle	edgeme	ents	1
Sum	mary		1
Back	ground	l and objective	
Gene	eral res	ults	
1	Furor	poor CHC omissions in 2010	,
.1 2	Lincor	rean Grid emissions in 2010	
.∠ 3	Mom	har States' activities and results related to proliminary 2010 CHC	••••••
.0	omice	ions	
.4	Metho	odologies and data sources	
Secto	oral res	ults	
.1	Energ	57	
	.1.1	1.A Energy - Fuel combustion	
	.1.2	1.A.1 Energy Industries	
	.1.3	1.A.2 Manufacturing Industries and Construction	
	.1.4	1.A.3 Transport	
	.1.5	1.A.4 Other Sectors and 1.A.5 Other Fuel Combustion	d
	.1.6	1.B Fugitive Emissions from Fuels	
.2	Indus	strial processes	
	.2.1	2.A Mineral Products	
	.2.2	2C Metal Production	
	.2.3	Other source categories covering industrial processes	
.3	Agric	ulture	
	.3.1	4.A Enteric fermentation	
	.3.2	4.B Manure Management	1
	.3.3	4.D Agricultural Soils	1
	.3.4	Other source categories in the agricultural sector	1
.4	Waste	2	1
	.4.1	6.A Solid Waste Disposal	1
	.4.2	Other categories in the waste sector	1
.5	Other	source categories	1
Refe	rences.		11
Anne	ex 1 – E	Detailed overview of methods and data sources used	11
Anne	ex 2 – D	Detailed results	18

List of tables

Table 1	Change in GHG emissions between 2009 and 2010 at sectoral level in absolute and relative terms	33
Table 2	Summary table of approximated GHG emissions for 2010 for EU-15 (total emissions without LULUCF)	39
Table 3	Summary table of approximated GHG emissions for 2009 for EU-27 (total emissions without LULUCF)	40
Table 4	Deviation between the approximated GHG inventory estimated for 2009 and the real 2009 inventory submission at Member States' level and for the EU	42
Table 5	Deviation of approximated GHG inventories calculated in this report from MS own preliminary emission estimates for 2010 (total GHG emissions without LULUCF)	50
Table 6	Time of data availability of data sources used for the approximated inventory	54
Table 7	Overview of approaches used for the estimation of CO ₂ emissions from 1A fuel combustion	55
Table 8	2010 CO ₂ emissions for source category 1A Fuel combustion in various approximation approaches	60
Table 9	CO2 emissions for source category 1A Fuel Combustion	62
Table 10	CH4 emissions for source category 1A Fuel Combustion	63
Table 11	N2O emissions for source category 1A Fuel Combustion	64
Table 12	Change in GHG emissions between 2009 and 2010 for main source categories in the energy sector	65
Table 13	CO2 emissions for 1.A.1 Energy Industries	72
Table 14	CH4 emissions for 1.A.1 Energy Industries	73
Table 15	N2O emissions for 1.A.1 Energy Industries	74
Table 16	CO ₂ emissions from 1A2 Manufacturing Industries and Construction	77
Table 17	CH4 emissions from 1A2 Manufacturing Industries and Construction	78
Table 18	N2O emissions from 1A2 Manufacturing Industries and Construction	79
Table 19	CO2 emissions for source category 1A3	84
Table 20	CH4 emissions for source category 1A3	85

Table 21	N2O emissions for source category 1A3	86
Table 22:	Best fit trends for calculating CO2 and CH4 emissions from 1B2a, 1B2b and 1B2c	88
Table 23	CO2 emissions from 1B1 Fugitive Emissions from Solid Fuels	89
Table 24	CH4 emissions from 1B1 Fugitive Emissions from solid Fuels	90
Table 25	CO2 emissions from 1B2 Fugitive Emissions from Oil and Natural Gas	91
Table 26	CH4 emissions from 1B2 Fugitive Emissions from Oil and Natural Gas	92
Table 27	Change in GHG emissions between 2009 and 2010 for Industrial Processes emissions	93
Table 28	CO2 emissions from 2A Mineral Products	95
Table 29	CO2 emissions from 2C Metal Production	97
Table 30	Data from animal livestock surveyed by Eurostat in May/June (June) and December (Dec) used for proxy methodology and including application of a scaling factor if necessary (+SF).	99
Table 31	Implied emission factors from national UNFCCC inventories in 2009 used for the calculation of CH ₄ emissions from Enteric Fermentation (4A, left) and Manure Management (4B, right) for 2010.	. 100
Table 32	Change in GHG emissions between 2009 and 2010 in the agricultural sector	. 100
Table 33	CH4 emissions from 4A Enteric Fermentation	. 103
Table 34	Difference between emissions data obtained from inventory submissions to UNFCCC in 2009 and own calculation with Eurostat data for Enteric Fermentation from dairy cattle, non-dairy cattle, sheep, goats and swine in percent, 1990- 2009	. 104
Table 35	Causes for high deviations and outliers in data between Eurostat and UNFCCC inventories for Enteric Fermentation for EU-15 Member States.	. 105
Table 36	Causes for high deviations and outliers in data between Eurostat and UNFCCC inventories for Enteric Fermentation for EU-12 Member States	. 106
Table 37	CH4 emissions from 4B Manure Management	. 108

Table 38	Difference between emissions data obtained from inventory submissions to UNFCCC in 2009 and own calculation with Eurostat data for Manure Management from dairy cattle, non-dairy cattle, sheep, goats and swine in percent, 1990- 2009 109
Table 39	N ₂ O emissions from 4D Agricultural Soils
Table 40	Change in GHG emissions from 2009 and 2010 in the Waste sector
Table 41	Methods and data used for CO ₂ emissions from 1A Fuel combustion
Table 42	Methods and data used for CH4 and N2O emissions from 1A Fuel combustion
Table 43	Methods and data used for CO ₂ , CH ₄ and N ₂ O emissions for 1A1 Energy industries
Table 44	Methods and data used for CO ₂ emissions from 1A1a Public electricity and heat production
Table 45	Methods and data used for CH ₄ emissions from 1A1a Public electricity and heat production
Table 46	Methods and data used for N ₂ O emissions from 1A1a Public electricity and heat production
Table 47	Methods and data used for CO ₂ emissions from 1A1b Petroleum refining
Table 48	Methods and data used for CH4 emissions from 1A1b Petroleum refining
Table 49	Methods and data used for N ₂ O emissions from 1A1b Petroleum refining
Table 50	Methods and data sources used for CO ₂ , CH ₄ and N ₂ O emissions from 1A1c Manufacture of solid fuels and other energy industries
Table 51	Methods and data used for CO ₂ emissions from 1A2 Manufacturing industries and construction
Table 52	Methods and data used for CH ₄ emissions from 1A2 Manufacturing industries and construction
Table 53	Methods and data used for N2O emissions from 1A2 Manufacturing industries and construction
Table 54	Methods and data used for CO ₂ emissions from 1A3 Transport

Table 55	Methods and data used for CH4 and N2O emissions from 1A3 Transport	133
Table 56	Methods and data used for CO2 emissions from 1B1 Fugitive emissions from solid fuels	134
Table 57	Methods and data used for CH4 emissions from 1B1 Fugitive emissions from solid fuels	135
Table 58	Methods and data used for CO2 emissions from 1B2a Fugitive emissions from oil	136
Table 59	Methods and data used for CH4 emissions from 1B2a Fugitive emissions from oil	137
Table 60	Methods and data used for CO2 emissions from 1B2b Fugitive emissions from gas	138
Table 61	Methods and data used for CH4 emissions from 1B2b Fugitive emissions from gas	139
Table 62	Methods and data used for CO2 emissions from 1B2c Venting	140
Table 63	Methods and data used for CH4 emissions from 1B2c Venting	141
Table 64	Methods and data used for CO2 emissions from 1B2c Flaring	142
Table 65	Methods and data used for CH4 emissions from 1B2c Flaring	143
Table 66	Methods and data used for CO2 emissions from 2.A.1 Cement Production	144
Table 67	Methods and data used for CO2 emissions from 2.A.2 Lime Production	145
Table 68	Methods and data used for CH4 emissions from 2.A Mineral products	146
Table 69	Methods and data used for CO2 emissions from 2B1 Ammonia Production	147
Table 70	Methods and data used for N2O emissions from 2B2 Nitric Acid Production	148
Table 71	Methods and data used for N2O emissions from 2B3 Adipic Acid Production	149
Table 72	Methods and data used for CH4 emissions from 2.C Metal production	150
Table 73	Methods and data used for CO2 emissions from 2.C Metal production	151

Table 74	Methods and data used for N2O emissions from 2.C Metal production	152
Table 75	Methods and data used for CO ₂ emissions from 2.C.1 Iron and steel production	153
Table 76	Methods and data used for CO2 emissions from 2.D Other production	154
Table 77	Methods and data used for CH_4 and N_2O emissions from 2.D Other production	155
Table 78	Methods and data used for SF6 emissions	156
Table 79	Methods and data used for HFC emissions	157
Table 80	Methods and data used for PFC emissions	158
Table 81	Methods and data used for CO2 emissions from 2.G Other	159
Table 82	Methods and data used for CH4 and N2O emissions from 2.G Other	160
Table 83	Methods and data used for CO ₂ emissions from 3 Solvent and other product use	161
Table 84	Methods and data used for N2O emissions from 3 Solvent and other product used	162
Table 85	Methods and data used for CH4 emissions from 4.A. Enteric fermentation and from 4.B Manure management	163
Table 86	Methods and data used for N2O emissions from 4.B Manure management	164
Table 87	Methods and data used for CH4 emissions from 4.C Rice cultivation	165
Table 88	Methods and data used for CH4 emissions from 4.D Agricultural soils	166
Table 89	Methods and data used for N2O emissions from 4.D.1.1 Synthetic fertilizer	167
Table 90	Methods and data used for N2O emissions from 4.D.1.2 Animal manure applied to soil	168
Table 91	Methods and data used for N2O emissions from 4.D.1.3 N- fixing crops	168
Table 92	Methods and data used for N2O emissions from 4.D.1.4 Crop residues	169
Table 93	Methods and data used for N2O emissions from 4.D.1.5 Cultivation of histosols	169

Table 94	Methods and data used for N2O emissions from 4.D.1.6 Other	170
Table 95	Methods and data used for N2O emissions from 4.D.2 Pasture, Range and Paddock Manure	170
Table 96	Methods and data used for N2O emissions from 4.D.3 Indirect emissions	171
Table 97	Methods and data used for N2O emissions from 4.D.4 Other	171
Table 98	Methods and data used for CH4 emissions from 4.F Field burning of agricultural residues	172
Table 99	Methods and data used for N2O emissions from 4.F Field burning of agricultural residues	172
Table 100	Methods and data used for CO2 emissions from 6.A Solid waste disposal on land	173
Table 101	Methods and data used for CH4 emissions from 6.A Solid waste disposal on land	174
Table 102	Methods and data used for N2O emissions from 6.A Solid waste disposal on land	175
Table 103	Methods and data used for CH4 emissions from 6.B Wastewater handling	176
Table 104	Methods and data used for N2O emissions from 6.B Wastewater handling	176
Table 105	Methods and data used for CO2 emissions from 6.C Waste incineration	177
Table 106	Methods and data used for CH4 emissions from 6.C Waste incineration	177
Table 107	Methods and data used for N2O emissions from 6.C Waste incineration	178
Table 108	Methods and data used for CH4 emissions from 6.D Other	178
Table 109	Methods and data used for N2O emissions from 6.D Other	179

List of figures

Figure ES. 1	Trends in total greenhouse gas emissions excluding LULUCF in the EU-15 and the EU-27	18
Figure ES. 2	Change in total GHG emissions (without LULUCF) in the EU and its Member States, 1990–2010	19
Figure ES. 3	Changes in total GHG emissions without LULUCF for the EU and its Member States, 2009–2010	20
Figure 1	Change in GHG emission trends in Europe for total GHG emissions without LULUCF, 2009-2010	31
Figure 2	Change in GHG emission trends in Europe for total GHG emissions without LULUCF, 2009-2010 (This figure presents the same data as Figure 4, but in a different graphical layout)	32
Figure 3	Change in GHG emissions between 2009 and 2010 at sectoral level	33
Figure 4	Change in GHG emission trends in Europe for total GHG emissions without LULUCF, 1990-2010	37
Figure 5	Change in GHG emission trends in Europe for total GHG emissions without LULUCF, 1990-2010 (This figure presents the same data as Figure 7, but in a different graphical layout)	38
Figure 6	Deviation between the approximated GHG inventory estimated for 2009 and the real 2009 inventory submission and deviation between percentage change in emission levels 2008/2009 derived from the approximated GHG inventory and from official GHG inventory submissions for Member States, EU-15 and EU-27	44
Figure 7	Deviation between the approximated GHG inventory estimated for 2009 and the real 2009 inventory submission at sectoral level for EU-15 and EU-27	46
Figure 8	Deviation between the approximated GHG inventory estimated for 2009 and the real 2009 inventory submission at sectoral level for EU-27 (This figure presents the same data as Figure 7, but in a different graphical layout)	47
Figure 9	Relative deviation of the 2010 CO ₂ emissions results for category 1A (Fuel combustion) using the national energy balance approach vs. the BP approach	61
Figure 10	Change in GHG emissions between 2009 and 2010 for main source categories in the Energy sector	66

Figure 11	Development of CO ₂ emissions from energy consumption for the EU-27 between 2009 and 2010	. 67
Figure 12	Change in GHG emissions between 2009 and 2010 for Industrial Processes emissions	. 94
Figure 13	Change in GHG emissions from 2009 and 20010 in the agricultural sector	102
Figure 14	Change of IEF for enteric fermentation during 1990 and 2009 for EU-15 Member States	110
Figure 15	Change of IEF for enteric fermentation during 1990 and 2009 for EU-10 Member States	111

Abbreviations

AD	Activity data
AR	Activity rate
BP	British Petroleum
CH ₄	Methane
CITL	Community independent transaction log
CO ₂	Carbon dioxide
CO ₂ eq	Carbon dioxide equivalent
CRF	Common reporting format
Е	Emission
EC	European Commission
EEA	European Environment Agency
ETS	Emissions Trading Scheme
EU	European Union
EU-15	Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, the Netherlands, Portu- gal, Spain, Sweden and the United Kingdom.
EU-27	Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Den- mark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden and the United Kingdom
GDP	Gross domestic product
GHG	Greenhouse gas
IEA	International Energy Agency
IEF	Implied emission factor
IPCC	Intergovernmental Panel on Climate Change
IPCC GPG	IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories
LULUCF	Land use, land-use change and forestry
MS	Member State
Mt	Million tons
N2O	Nitrous oxide

QA/QC	Quality assurance and quality control
SF	Scaling factor
UNFCCC	United Nations Framework Convention on Climate Change

Acknowledgements

This report was prepared by the European Environment Agency's (EEA) Topic Centre for Air Pollution and Climate Change Mitigation (ETC/ACM).

The coordinating authors were Anke Herold (Oeko) and Julia Busche (Oeko). Other authors were, in alphabetical order, Hauke Hermann (Oeko), Wolfram Jörß (Oeko) and Margarethe Scheffler (Oeko).

The EEA project manager was Ricardo Fernandez. He also acknowledges the input provided by other EEA colleagues, particularly Andreas Barkman, Martin Adams, François Dejean, Eva Goossens and John van Aardenne. The EEA also acknowledges the input and/or comments received from EU Member States and other EEA member countries.

• Summary

Objective of the report

The objective of this report is to provide an early estimate of greenhouse gas (GHG) emissions in the EU-15 and EU-27 for the year 2010. The official submission of 2010 data to the United Nations Framework Convention on Climate Change (UNFCCC) will occur in 2012.

In recent years, the EEA and its European Topic Centre on Air Pollution and Climate Change Mitigation have developed a methodology to estimate GHG emissions using a bottom up approach — based on data or estimates for individual countries, sectors and gases — to derive EU GHG estimates in the preceding year (t–1). For transparency, this report shows the countrylevel GHG estimates from which the EU estimates have been derived. The 2010 estimates are based on the latest activity data available at country level and assume no change in emission factors or methodologies as compared to the official 2011 submissions to UNFCCC (which relate to emissions in 2009).

Some Member States estimate and publish their own early estimates of GHG emissions for the preceding year. Where such estimates exist they are clearly referenced in this report in order to ensure complete transparency regarding the different GHG estimates available. Member State early estimates were also used for quality assurance and quality control of the EEA's GHG early estimates for 2010.

Finally, EEA has also used the early estimates of 2010 GHG emissions produced by EEA member countries to assess progress towards the Kyoto targets in its annual trends and projections report (due to be published alongside the present report). In that report, the EEA's early estimates for 2010 were only used for countries that lack their own early estimates to track progress towards national and EU targets.

Rationale for early GHG emissions estimates

The European Union (EU), as a Party to the UNFCCC, reports annually on GHG inventories within the area covered by its Member States (i.e. emissions occurring within its territory). National GHG inventories for EU Member States are only available with a delay of 1.5 years. Inventories submitted on 15 April of the year t therefore include data up to the year t–2.

The latest official EU data available (1990–2009) covering all countries, sectors and gases were released on 31 May 2011 (EEA, 2011a) in connection with the annual submission of the EU GHG inventory to the UNFCCC (EEA, 2011b). The inventory data include GHG emissions not covered by the Montreal Protocol — both from sectors covered by the EU Emission Trading Scheme (ETS) and from non-trading sectors. However, whereas UNFCCC emissions run on a year t–2 timeline, Kyoto registries and EU ETS information is available on a year t–1 timeline. As such, verified EU ETS emissions are already available for 2010 (EEA, 2011c).

There are clear advantages in generating early GHG estimates for all sectors. Under the Kyoto Protocol, the EU-15 took on a common commitment to reduce emissions by 8 % between 2008 and 2012 compared to emissions in the base year. Total emissions from sectors included in the EU ETS are capped for the period 2008–2012, meaning that EU compliance with the Kyoto targets will be largely determined by the performance of non-ETS sectors, i.e. those sectors for

which data are only available on a t–2 timeline. An early estimate of the previous year's emissions can therefore improve tracking and analysis of progress towards Kyoto targets, as is done in the annual EEA report on greenhouse gas emission trends and projections in Europe. Member States seeking to determine whether they need to use Kyoto's flexible mechanisms to achieve their targets also benefit from access to early data.

In addition, the EU's 2009 Climate and Energy Package encourages trading and non-trading sectors to run on similar timelines. The Package represents the EU's initial response to limiting the global average temperature increase to no more than 2 °C above pre-industrial levels. To achieve this, Member States agreed to reduce total EU GHG emissions by 20 % compared to 1990 by 2020 (-21 % and -10 % for ETS and non-ETS sectors, respectively, compared to 2005). As with Kyoto, meeting the 2020 national targets will largely be determined by how countries reduce emissions in the non-trading sectors. Early GHG estimates can therefore help track progress towards the EU and national targets for 2020.

Finally, the Beyond GDP process (EU, 2011) likewise encourages authorities to generate environmental information in as timely a manner as socio-economic information.

Previous early GHG emission estimates for 2008 and 2009

At the end of August 2009 the EEA published its first early estimates of total greenhouse gas emissions in the preceding year (EEA, 2009). The actual reduction in greenhouse gas emissions in 2008, as officially reported to the UNFCCC in 2010, was within the confidence interval of the EEA's mean early estimates for the EU-15 and the EU-27.

In 2010, the EEA published its early emission estimates for 2009 — a year that witnessed the deepest economic recession since governments began reporting official GHG emission inventories to the UNFCCC (EEA, 2010). Again, the EEA's early estimates for EU-15 and EU-27 were accurate, with subsequent official UNFCCC emissions falling within the expected range of uncertainty. The main factors explaining the strong reduction in emissions in 2009 were further analysed in the 2011 EU GHG inventory submitted to the UNFCCC (EEA, 2011d).

Methodology for early GHG emission estimates

The present report sets out the estimated GHG emissions for 2010 for the EU Member States, the EU-15 and the EU-27 based on data sources that were published by mid-July of 2011. The estimates cover total GHG emissions as reported under the Kyoto Protocol and the UNFCCC excluding the land use, land-use change and forestry (LULUCF) sector.

Estimations are made for all major source categories in all sectors. For the most important source categories, data sources with updated activity or emission data for the year t–1 were identified and used to calculate emissions. For source categories for which no international datasets with updated activity data exist or which are too complex for such an approach, emissions were extrapolated from past trends (linear extrapolation) or emissions from the previous year were kept constant if historic data did not show a clear trend. On this basis, a detailed bottom-up approach was developed covering the full scope of emissions included in a GHG inventory submission.

The EEA estimates are based on publicly available datasets at the national, European and international levels, disaggregated by major source categories in all sectors reported under the UNFCCC and the Kyoto Protocol. Some countries publish their own early greenhouse gas estimates (Austria, Denmark, Germany, Italy, Luxembourg, the Netherlands, Poland, Spain, the United Kingdom, Norway and Switzerland). Where relevant, the EEA used these estimates to assess current progress in relation to greenhouse gas emission targets better and to verify its own calculations.

Early GHG emission estimates for 2010

Compared to 2009, estimated 2010 GHG emissions increased by 2.3 % (+/– 0.7) in the EU-15 and by 2.4 % (+/– 0.3) in the EU-27. This implies that EU-15 greenhouse gas emissions were approximately 10.6 % below the 1990 level in 2010 (¹) or 10.7 % below the base year level (EEA, 2011d). EU-27 emissions were 15.5 % below the 1990 level (²).

Figure ES.1 shows the emission trend for total GHG emissions without LULUCF in the period 1990–2010 (³). The emission increase in 2010 was partly due to recovery from economic recession in many European countries, which had caused substantial emission reductions in 2008 and 2009 in all Member States. In 2010 the winter was also colder than in the previous year, in particular in northern, central and eastern European countries, leading to increased demand for heating and higher emissions from the residential and commercial sectors.

¹Under the Kyoto Protocol, the EU-15 has a common commitment to reduce emissions on average by 8 % between 2008 and 2012 compared to emissions in the 'base year'. The base-year emissions for the EU-15 have been fixed to 4 265.5 million tonnes CO₂-equivalents (UNFCCC, 2011).

²Unlike the EU-15, the EU-27 does not have a common target under the Kyoto Protocol and therefore the EU-27 does not have an applicable base-year against which to compare emission changes. Emission changes compared to 1990 are applicable to the EU-27 as it has made a unilateral commitment to achieve at least a 20 % reduction of greenhouse gas emissions by 2020 compared to 1990.

³This is not equivalent to the difference to base year emissions because of accounting rules such as the selection of the base year for F-gases and the continuing recalculations of GHG inventories.

Figure ES. 1 Trends in total greenhouse gas emissions excluding LULUCF in the EU-15 and the EU-27

Source: EEA European Topic Centre for Air Pollution and Climate Change Mitigation (ETC/ACM), based on the 2011 EU greenhouse gas inventory submitted to the UNFCCC for the years 1990-2009 and early estimates for 2010

Change in GHG emissions in the period 1990–2010

Figure ES.2 presents the estimated change in GHG emissions for each Member State between 1990 and 2010 (⁴). Leaving aside the 2009 economic recession, a wide range of factors and policies (climatic and non-climatic) have contributed to the long-term decline in GHG emissions in the EU, particularly for CO2. These include improvements in energy efficiency, the shift to less carbon-intensive fossil fuels and the strong increase in renewable energy use. Implementation of the EU's Climate and Energy Package should lead to further reductions in emissions. The direct effects of the Montreal Protocol in reducing emissions of ozone-depleting substances have also indirectly contributed to significant reductions in emissions of some potent greenhouse gases such as CFCs. Other EU policies such as the Nitrates Directive, the Common Agriculture Policy (CAP) and the Landfill Waste Directive have also been successful in indirectly reducing greenhouse gas emissions from non-CO2 gases such as methane and nitrous oxides.

⁴The percentage change cannot be directly compared to the emission reduction obligations under the Kyoto Protocol and the Effort Sharing Decision because Member State net balances under the EU Emission Trading Scheme (ETS) need to be taken into account and the fixed base-year emissions are not identical to the latest recalculation of 1990 emissions. Furthermore, Member State use of flexible mechanisms and LULUCF activities also contribute to compliance with the Kyoto targets.

Figure ES. 2 *Change in total GHG emissions (without LULUCF) in the EU and its Member States,* 1990–2010

Note: Error bars are derived by doubling the deviations between the approximated GHG inventory estimated for 2009 and the real 2009 inventory submission at Member States' level and for the EU on either side of the mean estimate.

Source: EEA's ETC ACM based on the 2011 EU greenhouse gas inventory to UNFCCC for 1990-2009 and early estimates for 2010

Change in GHG emissions in the period 2009–2010

The 2010 data partly reflect differences between the Member States in terms of their recovery from the economic recession. As Figure ES.3 illustrates, GHG emissions decreased in Spain, Greece and Ireland, partly due to the economic recession. The largest absolute growth in emissions occurred in Germany and in the United Kingdom. Estonia experienced the largest relative emission increase.

Figure ES. 3 Changes in total GHG emissions without LULUCF for the EU and its Member States, 2009–2010

Note: For two Member States – Denmark and the UK – inventories submitted to the UNFCCC are different to the inventories submitted under the EU Monitoring Mechanism Decision due to the fact that Kyoto inventories include non-EU territories. The comparison in this table refers to the EC GHG inventory as consistent with the inventory submitted under the EC Monitoring Mechanism Decision.

Error bars are derived by doubling the deviations between the approximated GHG inventory estimated for 2009 and the real 2009 inventory submission at Member States' level and for the EU on either side of the mean estimate.

Source: EEA's ETC ACM based on the 2011 EU greenhouse gas inventory to UNFCCC for 1990-2009 and early estimates for 2010 Nine Member States have estimated and published their own early GHG emissions for 2010, which differ from the EEA data presented in Figure ES.3. Austria, Germany, Italy, Luxembourg, the Netherlands and Poland have estimated complete emissions in the form of CRF summary Table 2, similar to the approach in this report. Denmark, Spain and the United Kingdom have provided national-total emission estimates for 2010 but not for all the disaggregated subcategories of CRF summary Table 2. According to the country estimates, the expected change in GHG emissions in 2010 compared to 2009 is as follows: Austria (+ 5.4 %), Denmark (+ 0.7 %), Germany (+ 4.4 %), Italy (+ 0.5 %), Luxembourg (+ 4.6 %), the Netherlands (+ 5.9 %), Poland (+4.4 %), Spain (– 3.7 %) and the United Kingdom (+ 3.2 %).

The list below provides links to the early GHG estimates for 2010 that individual EEA member countries have published.

Germany

http://www.umweltbundesamt.de/uba-info-presse/2011/pd11-020_treibhausgase_deutlich_ unter_dem_limit.htm

http://www.umweltbundesamt.de/uba-info-presse/2011/pdf/pd11-020_anhangthg_ab_1990.pdf http://www.umweltbundesamt.de/uba-info-presse/2011/pdf/pd11-020_anhang_

emissionsquellen.pdf

Finland (only CO₂ from energy)

http://www.stat.fi/til/ehkh/2010/04/ ehkh_2010_04_2011-03-29_tie_001_en.html

France (only mainland France without overseas departments)

http://www.citepa.org/emissions/nationale/Ges/ Emissions_FRmt_GES.pdf

The Netherlands

http://www.cbs.nl/nl-NL/menu/themas/natuur-milieu/publicaties/artikelen/archief/2011/2011-3453-wm.htm

Norway

http://www.ssb.no/english/subjects/01/04/10/ klimagassn_en/

Switzerland

http://www.bafu.admin.ch/dokumentation/ medieninformation/00962/index.html?lang=de&msg-id=40367

Spain

http://www.marm.es/es/calidad-y-evaluacion-ambiental/temas/sistema-espanol-de-inventario-sei-/Avance_Inventario_Emisiones_GEI_2010__ tcm7-162704.pdf

The United Kingdom

http://www.decc.gov.uk/en/content/cms/ statistics/climate_stats/gg_emissions/uk_emissions/2010_prov/2010_prov.aspx.

In terms of sectors, the largest absolute emission increase in the period 2009–2010 occurred in the energy sector, which recorded a growth of 77.3 Mt CO₂-equivalent for the EU-15 and 95.5 Mt CO₂-equivalent for the EU-27 — equivalent to a 2.6 % increase in emissions in each. This growth in energy sector emissions reflects the increase in gross inland energy consumption of fossil fuels in the EU-27 in 2010. EU-27 natural gas use increased by about 7.4 % in 2010 compared to 2009, rising in almost all Member States. Oil consumption showed a small decrease relative to 2009 in the EU-27 (-1.2 %) and a more pronounced decline in the EU-15. The trend in solid fuel consumption between 2009 and 2010 varied considerably among Member States, with solid fuel use increasing by 3.8 % for EU-27 as a whole (BP, 2011).

In addition to the fossil fuel trend, EU-27 use of nuclear power and renewables increased in 2010. The use of renewable energy increased by 8.8 % (IEA/OECD, 2011a), whereas the use of nuclear power increased by 3.4 % (Eurostat, 2011) in the EU-27. Energy prices rose in 2010 by 4.5 % compared to 2009, almost reaching the same level as in 2008. However, gas prices in Europe decreased by 6.1 % (notwithstanding varying trends in individual Member States), while the oil price increased by 11.5 % and the coal price rose by 9.5 %, which also explains the higher growth of gas consumption compared to other fuels (IEA/OECD, 2011b).

In Europe as a whole, the winter in 2010 was colder than the preceding year, while summer 2010 was warmer (EEA, 2011e), leading to a higher demand for heating and cooling. Cooling degree days (⁵)in several Member States in the third quarter of 2010 were higher than in the same period in 2009, especially in France, Greece, Hungary, Italy, Portugal, Romania and Spain (EC, 2011).

The second largest absolute increase in emissions occurred in the industrial processes sector with growth of 17.6 Mt CO₂-equivalent for the EU-15 (7.0 %) and 24.1 Mt CO₂-equivalent for the EU-27 (7.5 %). This rise in industrial emissions reflects increased emissions in cement production and the iron and steel industry, whereas the chemical industry recorded a slight decrease. Verified emissions from industrial installations (excluding combustion) covered under the ETS (activity codes 2–8) increased by 6 % for the EU-15 and by 5 % for the EU-27 during 2009 and 2010. The increase was particularly strong in the pig iron or steel sector, which recorded 22.1 % growth in the EU-15 and a 19 % increase in the EU-27 (EEA, 2011c). Economic recovery in many European countries led to significant increases in industrial output and emissions.

In the agricultural sector GHG emissions decreased by 4.9 Mt CO₂-equivalent or 1.3 % in the EU-15 and by 7.3 Mt CO₂-equivalent or 1.5 % in the EU-27. The enteric fermentation and agricultural soils sub-sectors recorded particularly large reductions. Based on data derived from Eurostat, Italy and France showed a slight decrease in the number of cattle, while in Romania cattle, swine and sheep numbers declined significantly. A lower number of cattle results in less manure applied to soils and thus lower emissions of N₂O from soils. In addition, as the annual consumption of synthetic fertiliser — and thus N₂O emissions from the N input to soils — is estimated based on crop areas and the fertiliser application rate, a decrease in total utilised agricultural area leads to a reduction in emissions.

Greenhouse gas emissions from the waste sector are estimated to have fallen by 2.3 % in the EU-15 in 2010 and by 1.8 % in the EU-27. Emissions mainly occur in the solid waste disposal on land sub-sector, where CH₄ emissions are largely determined by the amount of biodegradable waste going to landfills.

Emission reductions in recent years are partly due to the (early) implementation of the Landfill Directive (EC, 1999) and similar legislation in the Member States. The Landfill Directive requires the Member States to reduce the amount of biodegradable waste that goes untreated to landfills and to install landfill gas recovery at all new sites. Linear extrapolation of the trend of previous years therefore implied a continued fall in GHG emissions from waste.

⁵Cooling degree days are defined as follows: the higher the outdoor temperature, the higher the number of cooling degrees days. On those days, when the daily average outdoor temperature is higher than 21°C, cooling degrees days values are in the range of positive numbers, otherwise they equal zero.

Uncertainty in early GHG emissions estimates

There is always a degree of uncertainty in estimating greenhouse gas emissions. Uncertainty increases if there is a lack of up-to-date activity data for some source categories, or there are changes in implied emission factors or in the methodologies used by Member States.

The early 2010 estimates are based on the national methodologies and emission factors used by Member States in their 2011 official submissions to the UNFCCC. Current quality improvements in Member State inventories due to take effect in next year's official submissions to the UNFCCC are therefore a source of uncertainty for the proxy inventory.

The uncertainty ranges presented for the early 2010 estimates are derived from comparing the official national data submitted to the UNFCCC for 2009 to the EEA early estimates for that year. However, by assessing the early greenhouse gas estimates that several Member States have produced for 2010 (Austria, Denmark, Germany, Italy, Luxembourg, the Netherlands, Poland, Spain and the United Kingdom), the EEA was able to verify the most suitable methodology for calculating emissions (see also Section 4.1.1), resulting in a reduced uncertainty range.

Official 2010 greenhouse gas emissions for the EU will be available in end-May or early-June 2012, when the EEA publishes the EU greenhouse gas inventory 1990–2010 and inventory report 2012 for submission to the UNFCCC.

References

BP, 2011, BP Statistical Review of World Energy 2011

(http://www.bp.com/liveassets/bp_internet/globalbp/globalbp_uk_english/reports_and_publica_tions/statistical_energy_review_2011/STAGING/local_assets/pdf/statistical_review_of_world_e_nergy_full_report_2011.pdf) accessed 24 September 2011.

EC, 1999, Council Directive 1999/31/EC of 26 April 1999 on the landfill of waste, OJ L 182, 16.7.1999.

EC, 2004, Decision No 280/2004/EC of the European Parliament and of the Council of 11 February 2004 concerning a mechanism for monitoring Community greenhouse gas emissions and for implementing the Kyoto Protocol, OJ L 49, 19.2.2004.

EC, 2011, European Commission – Directorate-General for Energy 2011 — quarterly report on European electricity markets (http://ec.europa.eu/ ener-gy/observatory/electricity/doc/qreem_2010_ quarter3.pdf) accessed 2 October 2011.

EEA, 2009, 'New estimates confirm the declining trend in EU greenhouse gas emissions' (http:// www.eea.europa.eu/highlights/new-estimates-confirm-the-declining-trend-in-eu-greenhouse-

gas-emissions) accessed 24 September 2011.

EEA, 2010, 'Recession accelerates the decline in EU greenhouse gas emissions' (http://www.eea.europa. eu/highlights/recession-accelerates-the-decline-in) accessed 24 September 2011.

EEA, 2011a, 'EEA greenhouse gas data viewer'

(http://dataservice.eea.europa.eu/PivotApp/pivot. aspx?pivotid=475) accessed 24 September 2011.

EEA, 2011b, Annual European Union greenhouse gas inventory 1990–2009 and inventory report 2011, EEA Technical Report No 2/2011 (http:// www.eea.europa.eu/publications/european-uniongreenhouse-gas-inventory-2011) accessed 24 September 2011.

EEA, 2011c, 'European Union Emissions Trading Scheme (EU ETS) data viewer' (http://dataservice. eea.europa.eu/PivotApp/pivot.aspx?pivotid=473) accessed 24 September 2011.

EEA, 2011d, Why did greenhouse gas emissions fall in the EU in 2009? EEA analysis in brief (http://www.eea. europa.eu/publications/european-union-greenhouse-gas-inventory-2011/why-did-greenhouse-gas-emissions) accessed 24 September 2011.

EEA, 2011e, 'Global and European temperature (CSI 012/CLIM 001) — Assessment published May 2011' (http://www.eea.europa.eu/data-and-maps/ indicators/global-and-europeantemperature/global-and-european-temperature-assessment-4) accessed 24 September 2011.

EU, 2009, *Council adopts climate energy legislative package* (http://www.consilium.europa.eu/uedocs/ cms_data/docs/pressdata/en/misc/107136.pdf) accessed 24 September 2011.

EU, 2011, Beyond GDP — Measuring progress, true wealth and the well-being of nations (http://www.beyond-gdp.eu/) accessed 24 September 2011.

Eurostat, 2011, 'Energy — Database' (http://epp. eurostat.ec.europa.eu/portal/page/portal/energy/data/ database) accessed 24 September 2011.

IEA/OECD, 2011a, *Renewables Information 2011*, International Energy Agency and Organisation for Economic Co-operation and Development.

IEA/OECD, 2011b, *End-use energy prices database*, 2011, International Energy Agency and Organisation for Economic Co-operation and Development.

UNFCCC, 2011, 'Kyoto Protocol base year data',

(http://unfccc.int/ghg_data/kp_data_unfccc/base_ year_data/items/4354.php) accessed 24 September 2011.

• Background and objective

The objective of this report is to provide an early estimate of greenhouse gas (GHG) emissions in the EU-15 and EU-27 for the year 2010. The national GHG (greenhouse gas) inventories of the EU-27 Member States under the United Nations Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol are available for policy and market analysis at a delay of normally 16 to 18 months.⁶ The next official GHG inventory submissions to UNFCCC will occur in April/May 2012.

There are clear advantages in generating early GHG estimates for all sectors. Under the Kyoto Protocol, the EU-15 took on a common commitment to reduce emissions by 8 % between 2008 and 2012 compared to emissions in the base year. When Member States set national emission caps for installations under the ETS for the period 2008–2012, they allocated part of their Kyoto emission budget (Kyoto Assigned Amounts) to the EU ETS and fixed the overall contribution of the ETS sectors towards reaching Kyoto national targets. ETS information runs on a year t-1 timeline but success in reducing emissions from sectors not covered by the EU ETS (running on a year t-2 timeline) will determine whether governments need to use Kyoto flexible mechanisms to achieve their targets. Therefore, an early estimate of the previous year's emissions can improve tracking and analysis of progress towards Kyoto targets, as it is done in the annual EEA report on greenhouse gas emission trends and projections in Europe.

In addition, the 2009 EU's Climate and Energy Package encourages trading and non-trading sectors to run on similar timelines. The Package represents the EU's response to limiting the rise in global average temperature to no more than 2 °C above pre-industrial levels. To achieve this Member States agreed to reduce total EU GHG emissions by 20 % compared to 1990 by 2020. Both ETS and non-ETS sectors will contribute to the 20 % objective. Minimising overall reduction costs to reach the 20 % objective implies a 21 % reduction in emissions from EU ETS compared to 2005 by 2020 and a reduction of approximately 10 % compared to 2005 by 2020 for non-trading sectors. From 2013, there will be an EU-wide cap on emissions from ETS installations (instead of national allocation plans as under Kyoto) and national targets for the non-trading sectors. As with Kyoto, meeting the 2020 national targets will by and large be determined by how countries reduce emissions in the non-trading sectors. Early GHG estimates can therefore help tracking progress to towards EU and national targets for 2020.

Finally, the Beyond GDP process (EU, 2011) likewise encourages authorities to generate environmental information in as timely a manner as socio-economic information.

In recent years, the EEA and its European Topic Centre on Air Pollution and Climate Change Mitigation have developed a methodology to estimate GHG emissions using a bottom up approach — based on data or estimates for individual countries, sectors and gases — to derive EU GHG estimates in the preceding year (t–1). In 2007 a feasibility study was conducted to identify appropriate data sources and methodologies for providing a more recent estimate for GHG

⁶ In terms of the delivery to the European Commission, the delay is 3 months shorter.

emissions of the past year. In 2008 these methodologies were applied for the first year resulting in approximated GHG estimates.

The EEA published its first early estimates of greenhouse gas emissions for 2008 at the end of August 2009⁷. The actual reduction in greenhouse gas emissions in 2008, as officially reported to UNFCCC earlier this year, was captured by the confidence interval around the estimates for EU-15 and EU-27 a year earlier. The significant reduction in GHG emissions in 2009 as indicated by Member States with their GHG inventories submitted under UNFCCC in 2011 was again captured by the confidence interval of the EEA estimates (see section .2).

In the present report the methodological approach from 2009 is repeated with several improvements reflecting experiences from the previous report and the use of additional data sources. The 2010 emission results for Member States and EU as well as the methodologies used are presented in the following sections of this report for transparency reasons, as this is how EU estimates have been derived. The 2010 estimates are based on the latest activity data available at country level and assume no change in emission factors or methodologies as compared to the official 2011 submissions to UNFCCC (which relate to emissions in 2009).

The approximated GHG inventory for 2010 covers total GHG emissions as reported under the Kyoto Protocol, excluding the LULUCF sector. For the most important source categories, data sources with updated activity or emission data for 2010 were identified, which were then used to calculate emissions. For source categories for which no international datasets with updated activity data exists or which are too complex for such an approach from a methodological point of view, emissions were extrapolated from past trends (linear extrapolation) or emissions from the previous year were held constant if historic data did not show a linear trend. On this basis, a detailed bottom-up approach was developed that covers the full scope of emissions of a GHG inventory submission.

Some Member States estimate and publish their own early estimates of GHG emissions for the preceding year. Where such estimates exist they are clearly referenced in this report in order to ensure complete transparency regarding the different GHG estimates available. The EEA has used the early estimates of 2010 GHG emissions produced by EEA member countries to assess progress towards the Kyoto targets in its annual trends and projections report (due to be published alongside the present report). In that report, the EEA's early estimates for 2010 were only used for countries that lack their own early estimates to track progress towards national and EU targets. Countries' early emission estimates were also used for quality assurance and quality control of the EEA's GHG early estimates for 2010.

In essence, this report aims at providing greenhouse gas estimates at EU level one year before the official submission of national greenhouse gas inventories to UNFCCC. The estimates are

⁷ New estimates confirm the declining trend in EU greenhouse gas emissions <u>http://www.eea.europa.eu/highlights/new-estimates-confirm-the-declining-trend-in-eu-greenhouse-gas-emissions</u>

based on a bottom-up approach with country specific sources and country-specific methods. The calculations make use of publicly available verified EU ETS emissions for 2010 (t-1) and published (t-1) activity data (at national, European and international levels) disaggregated by major source category in all sectors reported under the UNFCCC and the Kyoto Protocol. Some countries are producing and/or publishing their own early greenhouse gas estimates. These have been used by the EEA to better assess current progress in relation to greenhouse gas emission targets and also as a QA/QC and verification of own calculations.

• General results

.1 European GHG emissions in 2010

The 2010 EEA estimates indicate that after a decreasing trend of EU greenhouse gas emissions for five consecutive years, GHG emissions increased for the EU-15, the EU-27 and for most Member States (except for Bulgaria, Cyprus, Greece, Ireland, Romania and Spain) between 2009 and 2010. Compared to the 2009 official emissions published earlier this year, the annual increase in emissions is estimated to be about 2.3 % (+/-0.7 %) for the EU-15 and 2.4 % (+/-0.3 %) for the EU-27 (total emissions without LULUCF). Based on these 2010 estimates, total EU-15 emissions in 2010 would be -10.6 % below the 1990 level and -10.6 % below base year level. For EU-27, total GHG emissions in 2010 are estimated to be almost -15.5 % below 1990 emissions.

The emission increase in 2010 was partly due to the recovery from economic recession which, together with the strong growth in renewable energy use, had led to substantial emission reductions between 2008 and 2009 in all Member States. Following the significant drop in, GDP of -4.2 % in the EU-27 in 2009, official GDP data for 2010 indicate a GDP increase of 1.8 % in 2010.⁸ In 2010 the winter was colder than in the previous year, in particular in Northern, Central and Eastern European countries, leading to a higher heating demand and higher emissions from the residential and commercial sector. In addition the 2010 summer was warmer than the previous year leading to a higher cooling demand⁹.

The 2010 data partly reflect differences in the emission trend between those Member States that recovered from the economic recession and those with continued economic difficulties.

Figure 1 illustrates that greenhouse gas emissions decreased in Spain (-2.9 % compared to 2009), Greece (-1.8 %) and Ireland (-2.9 %). The largest absolute growth in emissions occurred in Germany (35.3 Mt CO₂eq) and the United Kingdom (17.2 Mt CO₂eq). Estonia experiences the largest relative emission increase of 20 %. Finland follows with a rise in total GHG emissions of 12.2 %.

In Germany, the largest EU economy and GHG emitter, the increase in GHG emissions is due to a favourable economic situation and higher industrial production: In 2010 GDP increased by 3.6 % and production in manufacturing industries by 10 %. Energy intensive industries such as steel production grew by 34 %, metal production by 20 % and chemical production by 17.5 %¹⁰. Coal and lignite consumption increased in the German power production. In addition, the cold winter in 2010 resulted in higher energy consumption for heating¹¹.

⁸ Real GDP growth rate of GDP volume - percentage change on previous year http://epp.eurostat.ec.europa.eu/tgm/table.do;jsessionid=9ea7974b30dd8549af6fd90a4215b5a4bd09638f 55ac.e34SbxiPb3uSb40Lb34LaxqRb30Ne0?tab=table&plugin=1&language=en&pcode=tsieb020

⁹ European Commission – Directorate-General for Energy 2011

¹⁰ Ziesing 2011

¹¹ Umweltbundesamt 2011

The increase in CO₂ emissions between 2009 and 2010 in UK resulted primarily from a rise in residential gas use. Between 2009 and 2010 there was a 13 per cent increase in emissions from this sector¹². 2010 was, on average, the coldest year since 1987 in the UK. This increased the demand for space heating in 2010, which resulted in a significant increase in emissions from residential gas use. The energy supply sector was the second biggest contributor to the increase in CO₂ emissions between 2009 and 2010 in the UK. The increase in emissions from this sector since 2009 can almost entirely be attributed to power stations. Due to maintenance outages at some nuclear power stations, there was less nuclear power available for electricity generation, and more coal and gas were used instead. Generation from nuclear sources fell by 10 %, from 69 TWh in 2009 to 62 TWh in 2010, due to maintenance outages at several stations, including the largest nuclear station, Sizewell B, offline for six months.¹³

In Spain GHG emissions decreased despite an increase in net electricity production due to a higher use of renewable energies and nuclear energy.¹⁴ The continued economic recession in Spain was a one factor for the emission decrease although primary consumption of renewables continued growing at high rates¹⁵. Low temperatures in the first and fourth quarter 2010 led to higher emissions in the residential and service sector due to higher gas use. Transport emissions in Spain decreased by 3 % due to lower fuel consumption and higher shares of biofuels. The gross consumption of biogasoline and biodiesel increased by 53 % and by 31 % in 2009/2010, respectively. Data available from Eurostat suggest that annual road freight transport in Spain is decreasing for the third consecutive year since 2007: during 2009 and 2010, annual road freight transport decreased by 8 %.¹⁶

The strongest relative emission increase of 20 % between 2009 and 2010 occurred in Estonia which is driven by a similar high raise in final energy consumption. The ETS emissions in Estonia even grew by 40 % in the same period. The increase in energy production was mainly caused by a growing demand for energy induced by more active manufacturing as well as by

¹² DECC 2011a

¹³ DECC 2011b

¹⁴ Ministerio de Medio Ambiente y Medio Rural y Marino 2011

¹⁵ Both renewables and the economic recession were the main reasons for the decrease in GHG emissions in EU Member States in 2009 <u>http://www.eea.europa.eu/publications/european-union-greenhouse-gasinventory-2011/resolveuid/0847dce05c7f4f7b7c17cc45f917f3ba</u> Renewables continue to be a main driver of lower-than-otherwise GHG emissions in 2010. Already in 2008, Spain accounted for about one third of the EU-27 net reduction in GHG emissions because of less use of (high carbon content) coal in electricity generation, more use gas and more use of renewable energy, as well as improved efficiency in the transformation of energy <u>http://www.eea.europa.eu/pressroom/newsreleases/why-didgreenhouse-gas-emissions</u> The strong growth in renewable energy consumption continued in Spain in 2009, and based on preliminary data, is expected to continue in 2010 despite the economic recession. Other factors contributing to lower GHG emissions will be analyzed in 2012, when the full energy balances and official GHG inventories become available.

¹⁶ IEA/OECD Renewables Information 2011 for data on biodiesel and biofuels, Eurostat database for annual road transport

the growth in the exports of electricity. According to Statistics Estonia, in 2010 the production of industrial enterprises grew by 23 % compared to the previous year.¹⁷ Electricity exports increased by 48 % and imports dropped by 64 % compared to 2009. The electricity was exported to Finland (43 %), Latvia (32 %) and Lithuania (25 %). Due to a high demand and higher electricity prices in Finland a record electricity export volume was reached via the Estlink cable. Because of the closure of the Ignalina power plant in Lithuania, more electricity was exported to Lithuania and Latvia.

¹⁷ Statistics Estonia 2011

Figure 1 Change in GHG emission trends in Europe for total GHG emissions without LULUCF, 2009-2010¹⁸

- Source: EEA's ETC ACM based on the 2011 EU greenhouse gas inventory to UNFCCC for 1990-2009 and early estimates for 2010
- **Note:** Error bars are derived by doubling the deviations between the approximated GHG inventory estimated for 2009 and the real 2009 inventory submission at Member States' level and for the EU (cf. Table 4) on either side of the mean estimate.

¹⁸ For two Member States – Denmark and the UK – GHG inventories submitted to the UNFCCC are different to the inventories submitted under the EU Monitoring Mechanism Decision, as their Kyoto inventories include non-EU territories. The comparison in this table refers to the EU GHG inventory consistent with the inventory submitted by these countries under the EU Monitoring Mechanism Decision.

Figure 2 Change in GHG emission trends in Europe for total GHG emissions without LULUCF, 2009-2010 (This figure presents the same data as Figure 4, but in a different graphical layout)

Source: EEA's ETC ACM based on the 2011 EU greenhouse gas inventory to UNFCCC for 1990-2009 and early estimates for 2010

Table 1 and Figure 3 show the changes between 2009 and 2010 at sectoral level for the EU-15 and the EU-27.

Table 1Change in GHG emissions between 2009 and 2010 at sectoral level in absolute and relative
terms

	Change 2009/10			
Sector All	EU-15		EU-27	
	Mt CO ₂ eq	%	Mt CO ₂ eq	%
Energy	77.3	2.6%	95.5	2.6%
Industrial processes	17.6	7.0%	24.1	7.5%
Solvent and Other Product Use	0.0	-0.3%	0.0	-0.3%
Agriculture	-4.9	-1.3%	-7.3	-1.5%
Waste	-2.5	-2.3%	-2.6	-1.8%
Other	NE,	NE,	NE,	NE,
Total	87.5	2.35%	109.7	2.38%

Source: EEA's ETC ACM based on the 2011 EU greenhouse gas inventory to UNFCCC for 1990-2009 and early estimates for 2010

Figure 3 Change in GHG emissions between 2009 and 2010 at sectoral level

Source: EEA's ETC ACM based on the 2011 EU greenhouse gas inventory to UNFCCC for 1990-2009 and early estimates for 2010

The 2nd largest emission increase from 2009 to 2010 happened in Finland where total energy consumption in 2010 grew by 9 %¹⁹. Energy consumption increased due to the recovery of industrial production and for heating of buildings. The use of fossil fuels grew by 11 % and peat use increased by over 30 % in Finland. The consumption of hard coal also grew by 23 per cent. Energy produced with nuclear energy went down by three per cent, which was caused by longer maintenance shutdowns in the nuclear power plants. The use of natural gas increased by over ten per cent. Nearly 12.4 per cent more electricity than in the previous year was also produced for exports to the Nordic market. The increase in electricity exports can partly be explained by the lower than average water supply in the Nordic countries, particularly in Sweden and Norway, which has reduced the production of electricity with hydro power. The cold winter increased the need for heating.

On a sectoral basis, the largest absolute emission increase occurs in the Energy sector, which shows a growth of 77.3 Mt CO₂eq for the EU-15 and 95.5 Mt CO₂eq for the EU-27 – equivalent to an increase in emissions of 2.6 %, respectively. This growth in emissions in the Energy sector reflects the increase of gross inland energy consumption in the EU-27 in 2010. Natural gas use increased by about 7.4 % in 2010 compared to 2009 in the EU-27 and in almost all Member States. Oil consumption showed a small decrease relative to 2009 at EU level (-1.2 %) which is more pronounced for EU-15. The trend in solid fuel consumption between 2009 and 2010 varied considerably in different Member States and solid fuel use increased by 3.0 % for EU-27.²⁰ Energy prices overall rose in 2010 by 4.5 % compared to 2009 and achieved an almost similar level as in 2008. However, gas prices in Europe generally decreased by 6.1 % (however individual MS show different trends), while the oil price increased by 11.5 % and the coal price by 9.5 % which also explains the higher growth of gas consumption compared to other fuels²¹. Carbon prices remained relatively stable during 2010²².

Weather conditions in 2010 had different influences in different European regions on the energy sector. In Europe as a whole, the 2010 winter was colder than 2009's and the 2010 summer was warmer²³. The number of actual heating degree days (i.e. Eurostat's indicator to estimate changes in heat demand) increased by about 7 % on average in the European Union between the 2009 and 2010 winters. Increases in heating degree days²⁴ were in particular high in Northern, Central and Eastern European countries leading to a higher heating demand. But also the number of cooling degree day (an indicative measure for residential power demand for cooling during

¹⁹ Statistics Finland 2011

²⁰ BP's Statistical Review of World Energy 2011

²¹ Price index development in real terms for industry and households for OECD Europe retrieved from IEA 2011

²² Carbonprices: <u>http://www.pointcarbon.com/</u>

²³ Core set indicator 'Global and European temperature', EEA http://www.eea.europa.eu/data-and-maps/indicators/global-and-european-temperature/global-and-european-temperature-assessment-3

²⁴ Heating degree days (monthly data): http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg_esdgr_m&lang=en

the summer period; the higher the outdoor temperature, the higher the number of cooling degrees days) in the third quarter of 2010 were higher than in the same period in 2009, especially in South Eastern Europe (France, Greece, Hungary, Italy, Portugal, Spain and Romania)²⁵.

The second largest absolute increase in emissions occurred in the Industrial Processes sector with 17.6 Mt CO₂eq for the EU-15 (7.0 %) and 24.1 Mt CO₂eq for the EU-27 (7.5 %). This rise in industrial emissions reflects an increase in emissions in the cement production and iron and steel industry, whereas emissions from chemical industry show a slight decrease in non-CO₂ emissions. Economic recovery in many European countries led to significant increases in the iron and steel production in nearly all Member States in 2010 (except for Greece and the UK), e.g. crude steel production increased by more than 40 % in Belgium, Romania and Sweden, blast furnace iron production increased by more than 40 % in Germany, Italy and Belgium compared to 2009²⁶. This trend is also given by referring to the verified emissions data from non-combustion installations covered under the ETS. CO₂ emissions from activity code 5 (pig iron or steel) in 2010 increased by more than 40 % for Belgium, Italy and Sweden and by 28 % in Germany compared to the previous year (see chapter .**2.2**)²⁷. In the cement sector the EU-27 production increased slightly in 2010 compared to 2009.

In the agricultural sector GHG emissions show a decrease of -4.9 Mt CO₂eq or -1.3 % and for the EU-15 and a decrease of -1.5 % or -7.3 Mt CO₂eq for the EU-27. This decrease was mainly due to emission reductions in the sub-sectors Enteric Fermentation and Agricultural Soils that resulted from a lower number of cattle in France, Italy and Romania. Based on results of statistical survey on livestock and animal production, the Romanian National Institute of Statistics found that animal production in Romania decreased in 2010 compared to 2009²⁸. A lower number of cattle resulted in a lower amount of manure applied to soils and thus less emissions of N₂O from soils. In addition, a reduced total utilised agricultural area and an associated minor annual consumption of synthetic fertilizer led to a reduction in emissions in the UK²⁹.

The Waste sector is expected to show a rather small decrease of -2.3 % for the EU-15 and -1.8 % for the EU-27. GHG emissions decreased mainly in the sub-sector Solid Waste Disposal on Land where the amount of biodegradable waste going to landfills – as the main driving force of CH4 emissions – gradually decreased in most Member States since several years. To fulfil targets laid down in the Landfill Directive that was adopted in 1999, Member States are required to reduce the amount of biodegradable waste disposed untreated to landfills and to install landfill gas

²⁵ European Commission – Directorate-General for Energy 2011

²⁶ Based on crude steel production and blast furnace iron production from IISI

²⁷ European Union Emissions Trading System (EU ETS) data viewer, EEA http://dataservice.eea.europa.eu/PivotApp/pivot.aspx?pivotid=473

²⁸ National Institute of Statistics Bulgaria 2011

²⁹ DEFRA 2011

recovery at all new sites³⁰. Thus, linear extrapolation of the trend of previous years led to continuously decreasing GHG emissions from Waste.

Figure 4 shows the emission trend for total GHG emissions without LULUCF between the years 1990 and 2010. According to these estimates, total EU-15 emissions in 2010 will be -10.6 % below the 1990 level and -10.6 % below base year level. For EU-27, total GHG emissions in 2010 are estimated to be almost -15.5 % below 1990 emissions.

It should be borne in mind, however, that the percentage reduction trends shown in Figure 4 cannot be directly compared to the emission reduction obligations under the Kyoto Protocol and the Effort Sharing Decision for reasons of scope:

The emissions and emission trends in this report do not contain the information whether a Member State has a positive or negative net balance under EU Emission Trading System. In order to assess a Member State's performance with regard to the Kyoto targets, the physical emissions would need to be corrected for that ETS balance. Moreover, the 1990 emission as reported by the Member States in their latest GHG inventory submissions are not necessarily identical to the base year emissions as fixed after UNFCCC review of initial reports under the Kyoto Protocol. Furthermore, Member States have the option to influence their performance in regard to the Kyoto targets by taking action in the LULUCF (Land use, land use change and forestry) sector or by making use of the flexible mechanisms under the Kyoto Protocol. In addition, regarding the EU-15's progress to its joint Kyoto targets as whole, it must not neglected that overachievements by single Member States might not be available to compensate other Member States' failure to achieve their own targets. A detailed analysis of Member States' and the EU-15's progress to wards the Kyoto targets is presented in the EEA report "Tracking progress towards Kyoto and 2020 targets in Europe".

³⁰ Directive 1999/31/EC

Figure 4 Change in GHG emission trends in Europe for total GHG emissions without LULUCF, 1990-2010

- Source: EEA's ETC ACM based on the 2011 EU greenhouse gas inventory to UNFCCC for 1990-2009 and early estimates for 2010
- **Note:** Error bars are derived by doubling the deviations between the approximated GHG inventory estimated for 2009 and the real 2009 inventory submission at Member States' level and for the EU (cf. Table 4) on either side of the mean estimate.

Figure 5 Change in GHG emission trends in Europe for total GHG emissions without LULUCF, 1990-2010 (This figure presents the same data as Figure 7, but in a different graphical layout)

Source: EEA's ETC ACM based on the 2011 EU greenhouse gas inventory to UNFCCC for 1990-2009 and early estimates for 2010

Annex 2 includes summary tables for 2010 for the EU-27, EU-15 and for each Member State. Table 2 and Table 3 show the detailed results for the EU-15 and the EU-27.

Table 2Summary table of approximated GHG emissions for 2010 for EU-15 (total emissions with-
out LULUCF)

SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 2010 Submission 2011 v1.0 EU-15

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
	002(!)	•	CO2 6	quivalent (Go	1)	0.0(_)	. otai
Total (Net Emissions) (1)	3 156 139.1	305 515.4	274 583.4	67 299.6	1 865.5	5 781.8	3 811 184.9
1. Energy	2 978 562.5	42 485.9	29 091.0				3 050 139.4
A. Fuel Combustion (Sectoral Approach)	2 960 012.2	12 728.7	28 985.6				3 001 726.5
1. Energy Industries	1 037 268.3	2 683.6	8 795.1				1 048 746.9
2. Manufacturing Industries and Construction	494 041.6	1 518.5	6 125.6				501 685.7
3. Transport	798 428.1	1 163.7	7 751.1				807 342.9
4. Other Sectors	IE	IE	IE				IE,
5. Other	630 274.2	7 362.8	6 313.9				643 950.9
B. Fugitive Emissions from Fuels	18 550.3	29 757.3	105.3				48 412.9
1. Solid Fuels	745.3	7 678.4	IE				8 423.7
2. Oil and Natural Gas	17 805.0	22 078.9	IE				39 883.9
2. Industrial Processes	169 390.4	606.3	22 963.7	67 299.6	1 865.5	5 781.8	267 907.4
A. Mineral Products	91 741.6	6.8	NE				91 748.4
B. Chemical Industry	29 852.4	440.3	22 856.0				53 148.8
C. Metal Production	47 457.7	117.0	21.8		IE	IE	47 596.4
D. Other Production	32.0	6.2	79.4				117.6
E. Production of Halocarbons and SF6				IE	IE	IE	IE,
F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	IE,
G. Other	306.7	36.1	6.5	IE	IE	IE	349.3
3. Solvent and Other Product Use	5 786.0		3 532.5				9 318.5
4. Agriculture		166 651.4	207 297.9				373 949.2
A. Enteric Fermentation		122 352.7					122 352.7
B. Manure Management		41 431.3	21 307.7				62 739.0
C. Rice Cultivation		2 447.5					2 447.5
D. Agricultural Soils(3)		8.7	185 895.7				185 904.4
E. Prescribed Burning of Savannas		NE	NE				NE,
F. Field Burning of Agricultural Residues		411.2	94.5				505.7
G. Other		NE	NE				NE,
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE,
A. Forest Land	NE	NE	NE				NE,
B. Cropland	NE	NE	NE				NE,
C. Grassland	NE	NE	NE				NE,
D. Wetlands	NE	NE	NE				NE,
E. Settlements	NE	NE	NE				NE,
F. Other Land	NE	NE	NE				NE,
G. Other	NE	NE	NE				NE,
6. Waste	2 400.2	95 771.7	11 698.4				109 870.4
A. Solid Waste Disposal on Land	11.3	83 528.8	1.2				83 541.3
B. Waste-water Handling		10 043.9	10 467.3				20 511.1
C. Waste Incineration	2 359.8	484.9	270.1				3 114.8
D. Other	29.1	1 714.1	959.9				2 703.2
7. Other (as specified in Summary 1.A)	NE	NE	NE	NE	NE	NE	NE,
Memo Items: (4)							
International Bunkers	NE	NE	NE				NE.
Aviation	NE	NE	NE				NE.
Marine	NE	NE	NE				NE.
Multilateral Operations	NE	NE	NE				NE.
CO2 Emissions from Biomass	NE						NE,
							4
	Total CC	2 Equivalent Emi	ssions without L	and Use, Lan	d-Use Change	and Forestry	3 811 184.9
	Total	CO2 Equivalent	missions with I	and Lise Lan	d-Lise Change	and Forestry	NE

Source: EEA's ETC ACM based on the 2011 EU greenhouse gas inventory to UNFCCC for 1990-2009 and early estimates for 2010

Table 3Summary table of approximated GHG emissions for 2009 for EU-27 (total emissions with-
out LULUCF)

SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 2010
Submission 2011 v1.0
EU-27

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES			CO2 ec	quivalent (Gg			
Total (Net Emissions) (1)	3 881 124.7	408 603.8	351 318.6	74 481.0	2 440.1	6 178.6	4 724 146.7
1. Energy	3 639 003.8	81 988.3	34 302.1				3 755 294.2
A. Fuel Combustion (Sectoral Approach)	3 619 999.5	18 579.9	34 196.3				3 672 775.6
1. Energy Industries	1 398 250.7	2 863.5	10 371.0				1 411 485.2
2. Manufacturing Industries and Construction	576 904.7	1 715.3	6 574.0				585 194.1
3. Transport	917 147.8	1 450.0	9 822.7				928 420.5
4. Other Sectors	IE	IE	IE				IE,
5. Other	727 696.2	12 551.1	7 428.5				747 675.8
B. Fugitive Emissions from Fuels	19 004.3	63 408.4	105.8				82 518.6
1. Solid Fuels	827.8	23 579.4	IE				24 407.2
2. Oil and Natural Gas	18 176.5	39 829.0	IE				58 005.5
2. Industrial Processes	231 961.6	1 104.7	28 686.0	74 481.0	2 440.1	6 178.6	344 851.9
A. Mineral Products	116 366.6	10.4	NE				116 377.1
B. Chemical Industry	39 093.3	762.6	28 565.1				68 421.0
C. Metal Production	74 286.9	289.5	34.9		IE	IE	74 611.4
D. Other Production	40.6	6.2	79.4				126.2
E. Production of Halocarbons and SF6				IE	IE	IE	IE,
F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	IE,
G. Other	2 174.1	36.1	6.5	IE	IE	IE	2 216.6
3. Solvent and Other Product Use	7 086.8		4 323.3				11 410.1
4. Agriculture		198 850.4	269 856.5				468 706.9
A. Enteric Fermentation		145 815.5					145 815.5
B. Manure Management		49 944.5	30 770.1				80 714.6
C. Rice Cultivation		2 563.7					2 563.7
D. Agricultural Soils(3)		8.7	238 940.2				238 948.9
E. Prescribed Burning of Savannas		NE	NE				NE,
F. Field Burning of Agricultural Residues		517.9	146.2				664.2
G. Other		NE	NE				NE,
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE,
A. Forest Land	NE	NE	NE				NE,
B. Cropland	NE	NE	NE				NE,
C. Grassland	NE	NE	NE	_			NE,
D. Wetlands	NE	NE	NE				NE,
E. Settlements	NE	NE	NE				NE,
F. Other Land	NE	NE	NE				NE,
G. Other	NE	NE	NE				NE,
6. Waste	3 072.6	126 660.3	14 150.7				143 883.6
A. Solid Waste Disposal on Land	11.3	109 386.3	1.2				109 398.8
B. Waste-water Handling		14 961.0	12 772.7				27 733.6
C. Waste Incineration	3 032.1	485.7	291.8	_			3 809.6
D. Other	29.1	1 827.2	1 085.1				2 941.5
7. Other (as specified in Summary 1.A)	NE	NE	NE	NE	NE	NE	NE,
Mama Home: (1)							
Memo Items. (4)	NE	NE	NE				NE
	NE	NE	NE				NE,
Aviation	NE	NE	NE				NE,
Multilatoral Operations	NE	NE	NE				NE,
CO2 Emissions from Biomass	NE		112				NE,
							196,
	Total CO2 Ec	wivelont Emice	ione without Lor	d leo Lond	Lico Chongo (and Earostry	1 724 146 7
	Total CO2 Eq		incions with Lar	d lleg Land	Use Change	and Forestry	4724 140.7 NE
	10101002		issions with Lar	IU USE. Latiu-	USE Change a		INL.

Source: EEA's ETC ACM based on the 2011 EU greenhouse gas inventory to UNFCCC for 1990-2009 and early estimates for 2010

.2 Uncertainties

National GHG inventories are required to fulfil certain principles as laid out in the UNFCCC reporting guidelines for GHG inventories: inventories must be transparent, consistent, comparable, complete and accurate (TCCCA). The IPCC Good Practice Guidance recommends Parties to perform QA/QC procedures that are important information to enable continuous improvement to inventory estimates. Through the quantification of uncertainties at the source level and for the inventory as a whole, improvements can be prioritised.

Thus Parties may change methodologies in order to improve their greenhouse gas estimates at source level (e.g. moving from Tier 2 to Tier 3). Such methodological changes at MS level cannot be captured in the calculation of the approximated GHG inventory for the EU. On-going quality improvements in Member States' inventories to take effect in next year's official submissions to UNFCCC are therefore a source of uncertainty for the proxy inventory.

For the approximated GHG inventory uncertainties were estimated on the basis of the deviation of Member States' real GHG inventories in 2009 as submitted to UNFCCC by end of May 2011 with the approximated GHG inventory estimated for 2009. This deviation is shown for the EU-15, the EU-27 and the individual Member States in Table 4.

For the EU-15 the approximated GHG emissions were -0.7 % (-27.2 Mt CO₂eq) lower than the real GHG inventory submissions and for the EU-27 -0.3 % (-14 Mt CO₂eq). Compared to last year's analysis, the deviations between the approximated GHG inventory and the real inventory submissions could be reduced for the EU estimates. While for 2008, the approximated GHG inventory overestimated the emissions, for 2009 an underestimation of GHG emissions occurred. This is partly due to large recalculations by Member States in 2010 that resulted in higher emissions (especially in Germany and France). The national improvements of methodologies could not been considered for the calculation of the approximated GHG inventory, as the estimates for the proxy inventory have been based on the national methodologies used for 2009 inventory submissions. This is especially the case for those source categories for which linear trend extrapolation was performed, in particular for the source categories Solvent and Other Product Use and subcategories in the sector Agriculture and Waste (see below).

By referring to GHG inventory data submitted in 2011, the proxy estimates of the reduction of greenhouse gas emissions 2008/2009 amounted to -7.5 % (-301.5 Mt CO₂eq) for the EU-15 and to -7.4 % (-368.6 Mt CO₂eq) for the EU-27³¹. Greenhouse gas emissions in 2008 and 2009, as officially reported to UNFCCC in 2011, showed a reduction of emissions of -6.9 % (-274.3 Mt CO₂eq) for the EU-15 and -7.1 % (-354.5 Mt CO₂eq) for the EU-27. Even though the proxy estimates last year overestimated the average reductions officially reported to UNFCCC this year, the latter average reductions were captured by the upper and lower confidence limits around the mean proxy estimates estimated last year (+/-0.8 % for the EU-15, +/-0.6 % for the EU-27).

³¹ The decrease in GHG emissions 2008/2009 of 6.9 % both or EU-15 and EU-27 as given with the proxy estimates last year and as published by EEA in 2010 (<u>http://www.eea.europa.eu/pressroom/highlights/recession-accelerates-the-decline-in</u>) was based on the GHG inventory submission in 2010 (for the year 2008). With the GHG inventory submissions in 2011, all Member States carried out recalculations of their data for the year 2008, resulting in a different decrease as published before (see Table 4).

	UNFCCC	UNFCCC	UNFCCC		Change 2008-	Change 2008-	Change 2008-		-
	2008	2008	2009	D	2009 Proxy	2009 Proxy	2009 UNFCCC	Deviation	
MS	(Submission		ian 0014)	Proxy 2009	(Submission	(Output		Deviation	1 2009
	2010)	(Sunduc)	sion 2011)		2010)	(Sumaus)	sion 2011)		
		Gg CC	D₂eq			%		Gg CO ₂ eq	%
AT	86 641.2	86 960.7	80 058.9	80 650.2	-6.9%	-7.3%	-7.9%	591.4	0.7%
BE	133 252.9	135 155.1	124 439.9	128 178.0	-3.8%	-5.2%	-7.9%	3 738.1	3.0%
BG	73 467.7	69 028.8	59 493.0	63 766.3	-13.2%	-7.6%	-13.8%	4 273.2	7.2%
CY	10 219.6	10 181.8	9 400.7	10 172.4	-0.5%	-0.1%	-7.7%	771.7	8.2%
CZ	141 411.9	141 130.8	132 925.4	131 101.5	-7.3%	-7.1%	-5.8%	-1 823.9	-1.4%
DE	958 060.7	981 111.6	919 698.2	879 760.3	-8.2%	-10.3%	-6.3%	-39 937.8	-4.3%
DK	63 845.0	63 654.2	60 984.8	60 862.0	-4.7%	-4.4%	-4.2%	-122.8	-0.2%
EE	20 253.6	20 071.4	16 836.9	17 335.8	-14.4%	-13.6%	-16.1%	498.9	3.0%
EL	126 887.5	128 550.0	122 543.3	119 655.8	-5.7%	-6.9%	-4.7%	-2 887.5	-2.4%
ES	405 740.3	404 770.5	367 548.4	366 475.8	-9.7%	-9.5%	-9.2%	-1 072.6	-0.3%
FI	70 138.7	70 420.3	66 336.3	67 431.5	-3.9%	-4.2%	-5.8%	1 095.2	1.7%
FR	527 026.4	539 177.9	517 247.9	505 194.3	-4.1%	-6.3%	-4.1%	-12 053.6	-2.3%
HU	73 138.7	73 028.1	66 659.8	67 445.8	-7.8%	-7.6%	-8.7%	785.9	1.2%
IE	67 439.3	67 817.1	62 394.8	62 354.9	-7.5%	-8.1%	-8.0%	-39.9	-0.1%
IT	541 485.4	541 748.9	491 119.6	497 761.5	-8.1%	-8.1%	-9.3%	6 641.9	1.4%
LT	24 327.0	24 033.4	21 608.7	22 596.7	-7.1%	-6.0%	-10.1%	988.0	4.6%
LU	12 493.9	12 259.8	11 684.4	12 109.6	-3.1%	-1.2%	-4.7%	425.2	3.6%
LV	11 904.6	11 918.2	10 722.7	11 071.0	-7.0%	-7.1%	-10.0%	348.2	3.2%
MT	2 952.1	3 008.7	2 866.3	2 822.8	-4.4%	-6.2%	-4.7%	-43.5	-1.5%
NL	206 910.8	204 601.2	198 871.6	201 077.9	-2.8%	-1.7%	-2.8%	2 206.3	1.1%
PL	395 558.5	395 724.2	376 659.2	382 506.4	-3.3%	-3.3%	-4.8%	5 847.2	1.6%
PT	78 381.1	77 935.4	74 582.6	76 007.7	-3.0%	-2.5%	-4.3%	1 425.1	1.9%
RO	145 915.9	153 418.6	130 828.3	128 670.6	-11.8%	-16.1%	-14.7%	-2 157.7	-1.6%
SE	63 963.1	63 569.9	59 993.8	59 541.5	-6.9%	-6.3%	-5.6%	-452.3	-0.8%
SI	21 284.8	21 285.6	19 339.1	20 386.6	-4.2%	-4.2%	-9.1%	1 047.4	5.4%
SK	48 831.1	48 188.0	43 426.1	46 010.1	-5.8%	-4.5%	-9.9%	2 584.1	6.0%
UK	628 206.4	620 257.0	566 210.0	579 436.5	-7.8%	-6.6%	-8.7%	13 226.5	2.3%
EU-15	3 970 472.7	3 997 989.6	3 723 714.4	3 696 497.5	-6.9%	-7.5%	-6.9%	-27 216.9	-0.7%
EU-27	4 939 738.1	4 969 007.3	4 614 480.7	4 600 383.6	-6.9%	-7.4%	-7.1%	-14 097.1	-0.3%
EU-10	956 093.6	957 827.2	878 499.2	890 890.7	-6.8%	-7.0%	-8.3%	12 391.5	1.4%

Table 4Deviation between the approximated GHG inventory estimated for 2009 and the real 2009inventory submission at Member States' level and for the EU

Source: EEA's ETC ACM based on the 2010 and 2011 EU greenhouse gas inventories to UNFCCC for 2008 and 2009

Note: Deviation for EU-15 and EU-27 is based on the sum of absolute values from Member States.

Thus, the use of the data sources and methodologies for the early estimates published last year and the results mirrored rather well the decreasing trend in official emissions as reported to the UNFCCC this year.

The deviations given in Table 1 arise from several factors: the less precise methodologies and data used for the approximated GHG inventories (compared to official GHG inventories); the lack of updated (t-1) activity data for some key emission sources; and, from Member States' own recalculations of GHG estimates and methodological improvements which cannot be reflected in the approximated data where constant methodologies and emission factors are assumed.

The largest discrepancies in relative terms occurred for Cyprus (Proxy 8.2 % higher), followed by Bulgaria (Proxy 7.2 % higher) and Slovakia (Proxy 6 % higher). In absolute terms the discrepancies were highest for Germany (underestimation by Proxy of 40 Mt CO₂eq), France (underestimation by Proxy of 12 Mt CO₂eq) and the UK (overestimation by Proxy of 13 Mt CO₂eq). By comparing the percentage changes in emission levels 2008/2009 as derived from the Proxy inventory on the one hand and from official GHG inventory submissions to UNFCCC on the other, the deviations are in the same order of magnitude, see Figure 6. Whilst the emission reduction 2008/2009 as given by the approximated GHG inventory estimated for 2009 amount to -7.4 % for the EU-27, this reduction only amount to -7.1 % by using the official GHG inventory submission to UNFCCC (cf. Table 4). The difference of 0.3 % equals the deviation between the approximated GHG inventory estimated for 2009 and the real 2009 inventory submission.

Figure 6 Deviation between the approximated GHG inventory estimated for 2009 and the real 2009 inventory submission and deviation between percentage change in emission levels 2008/2009 derived from the approximated GHG inventory and from official GHG inventory submissions for Member States, EU-15 and EU-27

Source: EEA's ETC ACM based on the 2011 EU greenhouse gas inventory to UNFCCC for 2008 and 2009

Compared to the approximated GHG emissions that have been calculated last year, deviations could be reduced by 23 of 27 Member States. For five Member States the deviations were lower

than 1 % (Austria, Denmark, Spain, Ireland, and Sweden), whereas for nine Member States the deviations were higher than 3 % (Belgium, Bulgaria, Cyprus, Germany, Latvia, Lithuania, Lux-embourg, Slovakia and Slovenia). New Member States still show larger percentage deviations, because in particular for the small Baltic countries the available data basis used is not very accurate).

Member States' recalculations of GHG estimates and methodological improvements played a key role for the differences for Germany and France where recalculations resulted in a large increase of GHG emissions. In the following sections the country-specific deviations are further explained:

- Germany: The underestimation of the German GHG emissions occurred mainly in the energy sector (-35.9 Mt CO₂eq in Manufacturing Industries and Construction and -8.3 Mt CO₂eq in Energy Industries), in the industrial processes sector (20.2 Mt CO₂eq from Metal Production and -6.4 Mt CO₂eq from Chemical Industry), in the agricultural sector (-14.8 Mt CO₂eq from Agricultural Soils) and in the waste sector (-1.6 Mt CO₂eq from Solid Waste Disposal on Land). Two-thirds of the overrated GHG emissions could be explained by changes in methodologies and thus recalculations which Germany performed due to recommendations from the in-country review of the annual GHG submission in 2010.
- France: The underestimation of the French GHG emissions occurred mainly in the Waste sector (-11.9 Mt CO₂eq in Solid Waste Disposal on Land) and in the agricultural sector (-1.9 Mt CO₂eq from Enteric Fermentation). Almost the entire amount of overestimated GHG emissions could be explained by changes in methodologies.
- UK: The overestimation of the British GHG emissions (13.2 Mt CO₂eq) occurred mainly in the Energy sector (6.3 Mt CO₂eq from Transport), in the Waste sector (4.2 Mt CO₂eq in Solid Waste Disposal on Land and 0.5 Mt CO₂eq from Waste-water Handling), in the Industrial Processes sector (1.1 Mt CO₂eq from Metal Production and 1 Mt CO₂eq from Chemical Industry). Almost three-quarter of the overestimated GHG emissions could be explained by changes in methodologies and thus recalculations in the 2010 inventory.

Figure 7 presents the deviations for 2009 at sectoral level for the EU-15 and for the EU-27.

Figure 7 Deviation between the approximated GHG inventory estimated for 2009 and the real 2009 inventory submission at sectoral level for EU-15 and EU-27

Source: EEA's ETC ACM based on the 2011 EU greenhouse gas inventory to UNFCCC for 2009

The largest relative deviation occurred in the Waste sector (Solid Waste Disposal on Land) – for the EU-15 the approximated GHG emissions were 10.9 % (-12.2 Mt CO₂eq) lower than the real GHG emissions as contained in the inventory submissions. Emissions from this source category, by using the proxy methodologies, were underestimated especially for France and Germany. The deviation that was identified for France (-11.5 Mt CO₂eq) was almost in the same order of magnitude as the French recalculations that were due to the non-consideration of methane recovery (10.1 Mt CO₂eq) based on recommendations by the Expert Review Team (ERT) after the In-country review in 2010 (FCCC/ARA/2010/FRA, paras 147-160). GHG emissions were overestimated especially for Bulgaria (2.8 Mt CO₂eq), thus a lower deviation could be found for the EU-27 (6.3 %) than for the EU-15. However, the deviation of the approximated GHG emission estimates in this sector could be explained by recalculations of Bulgaria: Following the recommendations from the In-county review in 2010 (FCCC/ARA/2010/BRG, paras 162 and 163), the MS recalculated the CH₄ emissions from Solid Waste Disposal on Land, resulting in a decrease of emissions of 2.6 Mt CO₂eq).

A detailed analysis of the deviations at source category level showed that the approximated results matched rather well for 1A Fuel Combustion (0.8 % lower) and 1A1 Energy Industries (0.3 % lower).

Figure 8 Deviation between the approximated GHG inventory estimated for 2009 and the real 2009 inventory submission at sectoral level for EU-27 (This figure presents the same data as Figure 7, but in a different graphical layout)

Source: EEA's ETC ACM based on the 2011 EU greenhouse gas inventory to UNFCCC for 2009

The results for 1A2 Manufacturing Industries (11.4 % lower for the EU-15, 8.3 % lower for the EU-27) showed rather strong deviations for some large MS such as Germany (35 %) and UK (25 %). The large deviation for Germany was mostly due to major recalculations for that sector (see above). Nevertheless, for some Member States the deviations could not entirely be explained by recalculations.

In the Industrial Processes sector, the estimates for 2C Metal Production were the cause for the large deviation in the source category Industrial Processes. The underlying reason for the large difference (21 Mt CO₂eq) is the recalculation in the German GHG inventory (as explained above).

Differences also occurred for 2B Chemical Industry (-3.8 Mt CO₂eq). For these emissions no recent data sources are available for the approximated GHG inventory and emissions were extrapolated from past trends. Extrapolation methods cannot reflect the sudden changes that can

occur in these source categories due to technological improvements and more drastic changes in production levels than in other source categories. For example, Portugal's only fertilizer plant manufacturing ammonia has stopped its activity 2009 and relocated the ammonia production to India (EU NIR 2011). Extrapolations for the source category 2.B.1 thus resulted in an overestimation of GHG emissions for Portugal. 2010 activity data for Chemical Industry does not become available timely enough for the approximated GHG inventory or only at very high cost. The methodologies in 2010 were refined in the way that extrapolations are now performed at a more disaggregate level than in 2009, but it is likely that differences between the approximated GHG inventory estimated the real inventory submission will remain in the 2010 data for the reasons mentioned above. Recalculations in this source category thus have a large impact on the accuracy of emission estimates. The difference (3.8 Mt CO₂eq) can indeed be explained by recalculations in the German inventory; CO₂ quantities from the recovery were included in CO₂ emissions from Ammonia Production and an error in the estimation of N₂O emissions from Nitric Acid Production was corrected.

For Mineral Products estimates matched rather well except for several new Member States Cyprus (23.9 %), Estonia (44.5 %), Hungary (14.9 %), Lithuania (9 %), Malta (-21.4 %), Romania (14.1 %) and Slovakia (-12.2 %). For all these countries the deviations could not be explained by recalculations. Despite the use of CITL data in 2010, it is likely that differences will remain in the 2010 estimates.

In the agricultural sector the difference between the approximated EU-15 GHG inventory and real EU-15 inventory data amounted to 13.9 Mt CO₂eq and derive from deviations in several subsectors: 4A Enteric Fermentation (-2.6 % for the EU-15 and -2.8 % for the EU-27), 4D Agricultural Soils (-5.4 % for the EU-15 and -5.3 % for the EU-27) and 4F Field Burning of Agricultural Residues (6.8 % for the EU-15 and -5.3 % for the EU-27). Discrepancies were largely due to recalculations of Member States' data:

Among total agricultural emissions, the difference for 4D Agricultural Soils in absolute terms was highest (-10.1 Mt CO₂eq) and deviations were mainly due to recalculations in Germany (4D.2.3, see above). Deviations in the subcategory 4A Enteric Fermentation (-3.2 Mt CO₂eq) can also be explained mainly by recalculations in Germany (see above) and in France. France corrected the CH₄ EF for dairy cows which resulted in an increase of CH₄ emissions of 1.2 Mt CO₂eq. The differences in 4F Field Burning of Agricultural Residues were minor in absolute terms (0.03 Mt CO₂eq) and are due to recalculations in Spain, where emissions from field burning of stubbles and residues from agricultural crops have been recalculated in 2008, due to the availability of new information on crop surface and yields in that year.

.3 Member States' activities and results related to preliminary 2010 GHG emissions

Nine Member States also calculated preliminary GHG inventories or at least some parts of the GHG emissions for the year 2010 and made these results available to the authors of this report. Austria, Germany, Italy, Luxembourg, the Netherlands and Poland estimated complete emissions in the form of CRF summary table 2, similar to the approach in this report. Denmark, Spain and the UK provided emission estimates for 2010 as national total only and not for all disaggregated subcategories. Some Member States published their own approximated green-

house gas emissions for 2010 and the list below provides the links to these sources for individual EEA member countries:

• Germany:

http://www.umweltbundesamt.de/uba-info-presse/2011/pd11-020_treibhausgase_deutlich_unter_dem_limit.htm http://www.umweltbundesamt.de/uba-info-presse/2011/pdf/pd11-020_anhangthg_ab_1990.pdf http://www.umweltbundesamt.de/uba-info-presse/2011/pdf/pd11-020_anhang_emissionsquellen.pdf

- Finland (only CO₂ from energy): http://www.stat.fi/til/ehkh/2010/04/ehkh_2010_04_2011-03-29_tie_001_en.html
- France (only mainland France without overseas departments): http://www.citepa.org/emissions/nationale/Ges/Emissions_FRmt_GES.pdf
- Netherlands: http://www.cbs.nl/nl-NL/menu/themas/natuurmilieu/publicaties/artikelen/archief/2011/2011-3453-wm.htm
- Norway: http://www.ssb.no/english/subjects/01/04/10/klimagassn_en/
- Switzerland:

http://www.bafu.admin.ch/dokumentation/medieninformation/00962/index.html?lang=de& msg-id=40367

• Spain:

http://www.marm.es/es/calidad-y-evaluacion-ambiental/temas/sistema-espanol-deinventario-sei-/Avance_Inventario_Emisiones_GEI_2010__ tcm7-162704.pdf

• UK:

http://www.decc.gov.uk/en/content/cms/statistics/climate_stats/gg_emissions/uk_emissions/ 2010_prov/2010_prov.aspx

These preliminary data estimated by Member States were very useful for QA/QC purposes of the approximated EU inventory and for the refinement of methodologies. For almost all Member States there was a rather large discrepancy for emissions from fuel combustion in the Manufacturing Industries and Energy Industries, in Metal Production and Waste sector. For other sectors the comparison of the estimates presented in this report with Member States' own estimates match relatively well with mostly below 0.5 % deviation except for Austria and Spain where the approximated data differ by 1.0 % and 0.8 %, respectively (Table 5).

Member State	Proxy 2010 estimates	MS 2010 own estimates	Di	fference [%	6]	Changes	2009-2010
	Gg C	;O₂eq.	Proxy 2008	Proxy 2009	Proxy 2010	Proxy 2010	MS proxy
Austria	85,218	84,414	1.7%	0.7%	1.0%	6.4%	5.4%
Denmark	61,664	61,387	-1.0%	-0.2%	0.5%	1.1%	0.7%
Germany	954,973	960,100	-0.8%	-4.3%	-0.5%	3.8%	4.4%
Italy	494,140	493,581	-0.2%	1.4%	0.1%	0.6%	0.5%
Luxembourg	12,267	12,227	1.9%	3.6%	0.3%	5.0%	4.6%
Netherlands	211,357	210,654	1.2%	1.1%	0.3%	6.3%	5.9%
Poland	391,107	393,266	-2.1%	1.6%	-0.5%	3.8%	4.4%
Spain	356,854	353,949	4.6%	-0.3%	0.8%	-2.9%	-3.7%
UK	583,375	584,500	1.2%	2.3%	-0.2%	3.0%	3.2%
EU-15	3,811,185	_	0.8%	-0.7%	_	2.3%	_
EU-27	4,724,147	_	0.6%	-0.3%	-	2.4%	_

Table 5Deviation of approximated GHG inventories calculated in this report from MS own prelimi-
nary emission estimates for 2010 (total GHG emissions without LULUCF)

Source: Member States' preliminary data provided to EEA for the purposes of this report, own calculations

Note: Negative values indicate that the proxy inventory is lower than the MS' own estimates; positive values indicate that the proxy inventory is higher.

.4 Methodologies and data sources

For the estimation of approximated emissions, the following data sources for emissions or activities in the year 2010 were used:

- BP's Statistical Review of World Energy 2010³²;
- verified emissions reported under the EU-ETS and recorded in the CITL³³;
- Eurostat Monthly Oil and Gas Questionnaires and Monthly Coal Questionnaires
- Eurostat monthly data on crude oil production (indicator code 100100, product code 3100);
- Eurostat monthly total consumption data for natural gas (indicator code 100900, product code 4100);

32

 $http://www.bp.com/liveassets/bp_internet/globalbp/globalbp_uk_english/reports_and_publications/statisti-$

cal_energy_review_2008/STAGING/local_assets/2010_downloads/statistical_review_of_world_energy_full_report_2010.pdf

³³ EEA, 2011c: http://dataservice.eea.europa.eu/PivotApp/pivot.aspx?pivotid=473. The verified emissions in 2008 were corrected for the change in scope of the EU ETS between 2007 and 2008 based on a detailed analysis of all installation data.

- Eurostat production data for natural gas (indicator code 100100, product code 4100);
- Eurostat annual data for the final energy consumption of motor spirit, automotive diesel oil and kerosene/jet fuels;
- Eurostat monthly data for the internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels;
- Monthly production data for crude steel production and blast furnace iron production of the World Steel Association (previously IISI International Iron and Steel Institute) ³⁴;
- Annual production data for crude steel production for UK from ISSB Limited³⁵;
- Eurostat annual statistics on livestock population for dairy cattle, non-dairy cattle, swine, sheep, goats.
- National preliminary energy balance data or energy statistics
 - Bulgaria: Monthly statistics for liquid, solid and gaseous fuels, retrieved from <u>http://www.nsi.bg/otrasalen.php?otr=37</u>
 - Czech Republic: Primary energy sources, retrieved from <u>http://www.mpo.cz/dokument87231.html</u>
 - Denmark: Monthly energy statistics, retrieved from <u>http://www.ens.dk/en-</u> <u>US/Info/FactsAndFigures/Energy_statistics_and_indicators/Monthly%20Statistic/Sider</u> <u>/Forside.aspx</u>
 - Estonia: Energy balances derived from http://pub.stat.ee/pxweb.2001/I_Databas/Economy/07Energy/02Energy_consumption_and_production/01 Annual_statistics/01Annual_statistics.asp
 - Finland: Energy consumption data, retrieved from http://www.stat.fi/til/ehkh/2010/04/ehkh_2010_04_2011-03-29_tie_001_en.html
 - France: Monthly energy statistics gas, oil and coal, retrieved from <u>http://developpement-</u> <u>durable.bsocom.fr/statistiques/ReportFolders/reportFolders.aspx</u>
 - Germany: Quarterly energy consumption data, retrieved from <u>http://www.ag-energiebilanzen.de/viewpage.php?idpage=62</u> and
 Official Petroleum Data for Germany, retrieved from http://www.mwv.de/index.php/daten/statistikeninfoportal
 - Ireland: Energy balances, retrieved from <u>http://www.seai.ie/Publications/Statistics_Publications/Energy_Balance/</u>

³⁴ Available at http://www.worldsteel.org

³⁵ Available at http://www.issb.co.uk/uk.html

- Latvia: Monthly data on natural gas, solid fuels and oil products, retrieved from http://data.csb.gov.lv/DATABASEEN/vide/Short%20term%20statistical%20data/Energ y/Energy.asp
- Lithuania: Energy statistics, retrieved from <u>http://db1.stat.gov.lt/statbank/default.asp?w=1280</u>
- Netherlands: Annual energy balances, retrieved from <u>http://statline.cbs.nl/StatWeb/dome/?LA=EN</u>
- Slovenia: Annual balance of liquid, solid and gaseous fuels, retrieved from http://pxweb.stat.si/pxweb/Database/Environment/18_energy/04_18180_fuels/04_1818
 0_fuels.asp
- Sweden: Quarterly energy balances, retrieved from <u>http://www.ssd.scb.se/databaser/makro/MainTable.asp?yp=tansss&xu=C9233001&om</u> <u>radekod=EN&omradetext=Energi&lang=1</u> and Monthly data on liquid fuel use, retrieved from <u>http://www.ssd.scb.se/Databaser/makro/MainTable.asp?yp=bergman&xu=scb&omrad</u> <u>ekod=EN&omradetext=Energi&lang=2&langdb=1</u>
- United Kingdom: Energy trends. Quarterly data, retrieved from http://www.decc.gov.uk/en/content/cms/statistics/energy_stats/source/total/total.aspx

Based on these data sources, 2010 emission estimates were made for the following source categories:

- Energy
 - o 1.A Fuel Combustion
 - 1.A.1 Energy Industries
 - o 1.A.2 Manufacturing Industries and Construction
 - 1.A.3 Transport
 - 1.B Fugitive Emissions
 - 1.B.1 Solid Fuels
 - o 1.B.2.a Oil and Natural Gas, Oil
 - o 1.B.2.b Oil and Natural Gas, Natural Gas
 - o 1.B.2.c Oil and Natural Gas, Venting and Flaring
- Industrial Processes
 - o 2.A Mineral Products
 - o 2.C Metal Production
- Agriculture
 - 4.A Enteric Fermentation

o 4.B Manure Management

The alternative sources of AD and emissions listed above were only used if the resulting emissions matched well with real inventories for past years. If large discrepancies occurred for individual Member States, different approaches (trend extrapolation, constant values from previous year) were used.

For the Waste sector and all other inventory source categories not listed above, no 2010 activity data was available that could be combined with IEFs from GHG inventories. These categories were extrapolated from 2011 GHG inventories, either by trend extrapolation or by taking the constant values of the year 2009 and by following the gap filing rules in accordance with the implementing provisions under Council Decision 280/2004/EC. Constant values were used when past trends were inconsistent and strongly fluctuating; trend extrapolation was used when historic time series showed good correlations with a linear trend.

Based on the analysis of deviations of the approximated GHG emissions for 2009 compared to final Member States emissions estimates submitted to the UNFCCC for 2009 (see section .2) a number of methodological changes were introduced or further applied (2B) for the estimation in this report compared to the approach for 2009:

- 1A Fuel Combustion: Four different approaches were used based on BP data, Eurostat monthly energy data and available national energy balance data for 2010;
- 2B Chemical Production: Extrapolation was undertaken at more disaggregate level for all subcategories;
- 2C1 Iron and Steel: Due to a lack of correlation of the used approach a country-specific method was introduced for UK that improved the correlation of emission estimates from iron and steel with the production trend in the iron and steel industry.

Annex 1 provides a detailed overview of methods and data sources used for each source category and Member State.

The estimation of the approximated GHG inventories for European Member States was delayed in 2009 as the latest data source (CITL) became available only late in July³⁶, but could be provided more timely in this report. The timing of future releases will depend on the release of the underlying data sources used for the estimation. The availability of data sources is shown in Table 6.

The latest data sources that became available in 2010 was the BP statistical review of World Energy which is published annually by 15 June. In July of each year updated verified emissions in the CITL have been available in recent years. In 2011 CITL data became available sooner than in 2010. Member States' national energy statistics are released at different point in times and the

³⁶ Experiences with CITL data releases in 2006-2008 have shown that before July of each year CITL data were not yet complete for all Member States and delays occurred for some countries while data was being consolidated in July.

national websites do not always indicate the publication data and whether the publication is regularly made available at the same date.

Data source	Availability
CITL verified emissions	March April, later updates depend- ing on MS data. Data as of 24 May 2011 was used.
BP Statistical Review of World Energy	15 June
Eurostat monthly production data for hard coal and lignite	3 month after reporting period
Eurostat monthly production data on crude oil input to refineries	3 month after reporting period
Eurostat monthly production data for crude oil	3 month after reporting period
Eurostat monthly production data for natural gas	3 month after reporting period
IISI monthly production data for crude steel produc- tion	two months after reporting
IISI monthly production data for blast furnace iron production	two months after reporting
Eurostat annual statistics on livestock population for dairy cattle, non-dairy cattle, swine, sheep and goats	April
CRF inventory submissions	End of May (final submitted chang- es)
ISSB Limited (annual Iron and steel data)	publication date not indicated
Member States' national energy balances and national energy statistics	different publication dates

 Table 6
 Time of data availability of data sources used for the approximated inventory

• Sectoral results

.1 Energy

.1.1 1.A Energy - Fuel combustion

2010 emissions in source category 1.A (Energy - Fuel Combustion) are estimated independently of the estimates for categories 1.A.1 (Energy Industries – chapter .1.2), 1.A.2 (Manufacturing Industries and Construction – chapter .1.3) and 1.A.3 (Transport – chapter .1.4).

.1.1.1 Methods and data sources used

In 2010 five different approaches for CO₂ emissions from Fuel Combustion based on different data sources and methods were calculated for each Member State as presented in Table 7. Subsequently, the approach that led to emission estimates closest to the Member States' inventory estimation in past years was chosen as the final value for each Member State.

	Approach A	Approach B	Approach C	Approach D	Approach E
Data sources	BP energy	Eurostat	Eurostat	CITL data,	Member
	review	monthly	monthly	Eurostat data	States' na-
		energy statis-	energy statis-	for transport	tional energy
		tics	tics		statistics
Method	2010 con-	2010 activity	2010 con-	detailed es-	2010 con-
	sumption	data com-	sumption	timation for	sumption
	trend for	bined with	trend for	inventory	trend for
	solid, liquid	emission	solid, liquid	source cate-	solid, liquid
	and gaseous	factors from	and gaseous	gories 1A1,	and gaseous
	fuels applied	most recent	fuels applied	1A2, 1A3,	fuels applied
	to inventory	GHG inven-	to inventory	constant	to inventory
	data for 2009	tory	data for 2009	emissions for	data for 2009
				1A4 and 1A5	

Table 7 Overview of approaches used for the estimation of CO₂ emissions from 1A fuel combustion

Source: Öko-Institut

In the previous years, the main source for the estimation of CO₂ emissions from source category 1.A (Energy - Fuel Combustion) used to be the most recent BP Statistical Review of World Energy, which contains individual data for 20 EU Member States and combined data for Belgium and Luxembourg. No data are published for Cyprus, Estonia, Latvia, Malta and Slovenia in this source. The share of these (small) countries in energy consumption amounts to less than 1 % of total EU emissions, with some differences regarding individual energy sources. The BP data refer to primary energy consumption and covers only commercially traded fuels.

In order to further improve the CO₂ emission estimation, next to BP data (Approach A) additional data sources and estimation approaches were explored and used for 2010 emissions:

- Eurostat monthly energy statistics; i) absolute energy consumption (Approach B) & ii) energy consumption trend (Approach C) based on Member States' submissions of monthly Oil and Gas Questionnaires and monthly Coal Questionnaires to Eurostat..
- Early national energy statistics (Approach E): For a considerable number of Member States, preliminary energy statistics were available (cf. chapter .4). Fuel consumption data were (if necessary) converted in energy units and aggregated to solid, liquid & gaseous fuel categories.

CO₂ emissions reported in source category 1A (Fuel Combustion) are split up in the CRF by the fuel categories solid fuels, liquid fuels, gaseous fuels and other fuels. CO₂ emissions from other fuels cover mostly municipal or industrial waste incineration or co-incineration of secondary waste-type fuels. CO₂ emissions from the biomass fuel category are not accounted for in CRF category 1A (Fuel Combustion) and were consequently not included in the estimation.

All data sources were used in order to derive specific information for the development of CO₂ emissions from the fuel categories solid, liquid and gaseous fuels, as defined in the CRF with source category 1A (Fuel Combustion). For each of those fuel categories a fuel consumption trend 2009 to 2010 was derived from the respective data sources (this applies to approaches A (BP), C (Eurostat trend) and E (national energy statistics)). 2010 CO₂ emissions per fuel category were then estimated by multiplying the CO₂ emissions in that fuel category of the previous year by the fuel category specific consumption trend. In the case of approach B (Eurostat absolute figures) a detailed reference approach calculation of apparent fuel consumption based on monthly Eurostat data, combined with the emission parameters (net calorific values, carbon emission factor, carbon stored and fraction of carbon oxidized) taken from the most recent inventory submission was performed. None of the data sources provided information on the development of CO₂ emissions from the other fuels category. Thus 2010 CO₂ emissions from other fuels in source category 1A (Fuel Combustion) were approximated using the respective emissions as reported by the Member States in 2009³⁷. For some Member States country-specific adjustments were made for other fuels, e.g. for Finland reporting peat under 'other fuels' which is included under solid fuels in BP or Eurostat statistics. The general approach to the CO₂ emission calculation for 1A (Fuel combustion) is depicted in Equation 1 (applies to approaches A (BP), C (Eurostat trend) and E (national energy statistics)):

³⁷ In the case of Finland, CO₂ emissions from other fuels have an extraordinary high share in total 1A CO₂ emissions (15 % in 2009). This is due to the fact that Finland reports emissions from peat combustions in the other fuels category. For of all used data sources, however, peat would be classified as a solid fuel. Thus, Finnish CO₂ emissions from peat combustion in the past years were identified from theCRF submissions and transferred from "other fuels" to "solid fuels" in order to arrive at improved overall CO₂ emission estimates for category 1A Fuel Combustion.

Equation 1

$$E_{1A,CO2} = \frac{c_{solid}^{Y}}{c_{solid}^{Y-1}} \cdot E_{solid,CO2}^{Y-1} + \frac{c_{liquid}^{Y}}{c_{liquid}^{Y-1}} \cdot E_{liquid,CO2}^{Y-1} + \frac{c_{gaseous}^{Y}}{c_{gaseous}^{Y-1}} \cdot E_{gaseous,CO2}^{Y-1} + E_{other fuels,CO2}^{Y-1}$$
with

$$E_{1A,CO2}^{Y} \quad CO2 \text{ emissions in source category 1A}$$

$$c_{solid/liquid/gaseous}^{Y} \text{ consumption of solid/liquid/gaseous fuels}$$

$$c_{solid/liquid/gaseous}^{Y-1} \quad CO2 \text{ emissions in the respective fuel category in the previous year}$$

In the case of approach B (Eurostat absolute figures) the calculation approach is as follows:

Equation 2

$$E_{IA,CO2}^{Y} = \sum_{allfuels} \left[\left((ApparentConsumption)^{y} _{fuel} \bullet ConvFactor _{fuel} \bullet CC _{fuel} \right) \bullet 10^{-3} \right]$$

$$- ExcludedCarbon_{fuel} \bullet COF _{fuel} \bullet 44/12]$$

$$E_{IA,CO_{2}}^{Y} CO_{2} \text{ emissions in source category } IA$$

$$Apparentconsumption = production + imports - exports - international bunkers - stock change ConversionFactor = conversion factor for the fuel to energyunits (TJ) on a net calorific valuebasis CC = carbon content (tonne C/TJ)
Excluded carbon = carbon in feedstocks and non - energy use excluded from fuel combustion (ratio of 2009 total amount of C stored applied)
$$COF = carbon oxidation factor
44/12 = molecular weight ratio of CO_{2} to C$$$$

All approaches were calculated for the years 2009 and 2010, for BP data longer time series were available and were compared with Member States' final inventory emissions. Based on the analysis of the data source time series and an expert judgment of the validity of the provisional Eurostat and Member States' energy statistics, a specific approach was chosen for each Member State:

The BP data source (approach A) was chosen for Austria, Belgium, Germany, Greece, Hungary, Poland, Portugal, Romania, the Slovak Republic, Spain and the United Kingdom. Early national energy statistics data (approach E) were chosen for Bulgaria, Czech Republic, Denmark, Estonia, Finland, France, Ireland, Latvia, Lithuania, the Netherlands, Slovenia and Sweden. The Eurostat approach using absolute figures (approach B) was chosen for Cyprus and for Luxembourg the trend of Eurostat monthly data was used.

For Malta, neither BP data nor provisional energy balances were available nor the Eurostat monthly figures deemed to be sufficiently reliable. Therefore, the bottom-up approach (approach D) was used to estimate CO₂ emissions from 1.A Fuel Combustion for this Member

State. This was also the case for Austria and Italy. Here, 2010 CO_2 emissions for source category 1.A Fuel Combustion were estimated by summing up the 2010 CO_2 emission estimates for categories 1.A.1 (chapter .1.2), 1.A.2 (chapter .1.3) and 1.A.3 (chapter .1.4) and adding the reported CO_2 emissions for categories 1.A.4 (Other sectors) and 1.A.5 (Other Fuel Combustion) from the previous year (approach D – Equation 3):

Equation 3

$$\begin{split} E_{IA,CO2}^{Y} &= E_{IA1,CO2}^{Y} + E_{IA2,CO2}^{Y} + E_{IA3,CO2}^{Y} + E_{IA4,CO2}^{Y-1} + E_{IA,5CO2}^{Y-1} \\ with \\ E_{IA,CO2}^{Y} & CO2 \ emissions \ in \ source \ category \ IA \\ E_{IA1/IA2/IA3,CO2}^{Y} & CO2 \ emission \ estimates \ in \ source \ category \ IA1 / IA2 / IA3 \\ E_{IA4/IA5,CO2}^{Y-1} & CO2 \ emissions \ in \ source \ category \ IA4 / IA5 \ in \ the \ previous \ year \end{split}$$

Member States' own proxy inventories were used for QA/QC purposes and for verification of the approximated GHG estimates: For countries submitting own proxy calculations, results for 1A were compared and the method that fitted best to Member States' own proxy calculations was selected for these countries. Thus for Austria and Italy approach D (bottom up) was chosen and for Germany BP data (approach A) instead of national statistics were used. For Luxembourg approach C (Eurostat Trend) was used.

The estimation for CH₄ emissions from source category 1.A (Fuel Combustion) is based on the approximated trend of CO₂ emissions and depicted in Equation 4:

Equation 4

$E_{1A,CH4}^{Y} =$	$:(rac{E_{1A,CO2}^{Y}}{E_{1A,CO2}^{Y-1}})\cdot E_{1A,CH4}^{Y-1}$
with	
$E_{1A,CH4}^{Y}$	CH 4 emissions for source category 1A
$E_{1A,CO2}^{Y}$	CO_2 emissions for source category 1A as estimated in this report
$E_{1A,CO2}^{Y-1}$	CO2 emissions for source category 1A from previousyear
$E_{ m 1A,CH4}^{ m Y-1}$	CH 4 emissions for source category 1A from previous year

The estimation for N₂O emissions from source category 1.A (Fuel Combustion) is similar to CH_4 (Equation 5):

Equation 5

$E_{1A,N2O}^{Y} =$	$(rac{E_{1A,CO2}^{Y}}{E_{1A,CO2}^{Y-1}}) \cdot E_{1A,N2O}^{Y-1}$
with	
$E_{1A,N2O}^{Y}$	N2O emissions for source category 1A
$E_{1A,CO2}^{Y}$	CO2 emissions for source category 1A as estimated in this report
$E_{ m 1A,CO2}^{Y-1}$	CO2 emissions for source category 1A from previousyear
$E_{ m 1A,N2O}^{Y-1}$	N2O emissions for source category 1A from previousyear

.1.1.2 Results for 2010

The CO₂ emissions in category 1 A (Fuel Combustion) account for approx. 75 % of overall greenhouse gas emissions (without LULUCF) in the EU-27. As mentioned above, 2010 CO₂ emissions in this category are based on five different approximation approaches. Table 8 shows the calculation results for all Member States and highlights the approaches chosen per Member State.

	Approach A	Approach B	Approach C	Approach D	Approach E
				Bottom up:	preliminary
		Eurostat monthly	Eurostat monthly	1A1+1A2+1A3+	national energy
Gg CO2	BP (Trend)	(absolute)	(trend)	(1A4+1A5) _{Y-1}	statistics (trend)
AT	59 895	67 019	64 889	63 316	not available
BE	107 585	89 504	89 787	104 722	not available
BG	41 702	43 434	42 393	42 787	42 116
CY	not available	7 117	7 022	7 302	not available
CZ	103 478	109 029	102 746	103 706	105 134
DE	769 953	733 160	751 921	767 726	756 936
DK	47 796	47 507	49 039	46 648	47 517
EE	not available	17 129	16 019	18 688	17 268
ES	264 637	265 588	256 855	256 379	not available
FI	58 752	58 784	59 838	59 023	58 976
FR	359 188	346 345	347 108	353 717	357 284
UK	475 480	503 637	482 208	467 537	475 425
GR	96 024	84 393	86 471	90 987	not available
HU	48 563	47 690	47 967	46 525	not available
IE	41 233	37 450	38 612	40 193	39 728
IT	400 557	382 705	398 400	396 935	not available
LT	12 200	13 144	12 132	12 381	12 076
LU	10 827	10 507	10 670	10 471	not available
LV	not available	6 796	7 019	7 539	7 225
MT	not available	2 546	5 304	2 507	not available
NL	171 984	179 200	173 633	165 014	174 560
PL	302 570	300 928	294 210	300 693	not available
PT	51 737	46 064	44 004	47 025	not available
RO	72 811	80 731	77 636	72 943	not available
SE	44 040	46 573	50 744	46 927	45 610
SI	not available	14 478	15 740	15 253	15 598
SK	27 002	32 484	25 961	27 915	not available

Table 82010 CO2 emissions for source category 1A Fuel combustion in various approximation approaches

Note: The result for the approach chosen as the best guess per Member State is highlighted in colour. **Source:** EEA's ETC ACM

Figure 9 shows the deviations between 2010 CO₂ emissions results for category 1A (Fuel Combustion) using the national energy balance approach vs. the BP approach for those Member States where both datasets were available. In most cases, differences were rather small, i.e. below 2 %.

Figure 9 Relative deviation of the 2010 CO₂ emissions results for category 1A (Fuel combustion) using the national energy balance approach vs. the BP approach

Source: EEA's ETC ACM

Table 9, Table 10 and Table 11 show the results for the proxy inventory in 2010 compared to the inventory time series for the EU and all Member States for CO_2 , CH_4 and N_2O emissions respectively.

Source Category	1A	Fuel Combu	ustion (Secto	oral Approact	ı)				
Gas	CO2								
Member			Invent	ory data					Proxy
State	1990	1995	2000	2005	2006	2007	2008	2009	2010
					Gg				-
AT	54 076	56 235	57 841	70 579	67 471	64 349	63 540	59 213	63 316
BE	109 883	114 147	114 631	114 157	110 261	106 312	109 375	100 773	107 585
BG	73 325	53 297	41 704	46 166	47 704	50 970	49 066	42 854	42 116
CY	3 521	4 771	6 919	7 084	7 266	7 421	7 679	7 265	7 117
CZ	145 817	117 953	114 438	112 774	112 597	112 735	107 893	103 410	105 134
DE	977 264	869 291	827 226	802 254	807 491	785 265	787 788	739 913	769 953
DK	51 043	58 697	50 992	48 600	56 534	51 758	48 779	47 017	47 517
EE	35 202	17 025	14 536	15 758	15 201	17 880	16 291	13 950	17 268
ES	203 236	231 983	278 592	334 689	324 848	334 561	308 502	275 902	264 637
FI	52 941	54 509	52 951	52 504	63 659	61 655	53 617	51 745	58 976
FR	361 040	362 414	380 157	392 252	378 882	370 150	364 094	349 410	357 284
UK	562 123	523 986	527 813	532 075	530 257	520 575	509 939	462 507	475 480
GR	75 171	78 541	94 407	103 983	102 771	105 377	101 636	97 963	96 024
HU	66 522	57 125	54 190	56 190	55 038	53 121	52 021	47 144	48 563
IE	30 194	33 081	41 784	45 082	44 690	44 825	45 161	40 857	39 728
IT	401 975	414 840	435 096	459 378	454 553	444 871	437 209	393 619	396 935
LT	32 987	13 760	10 460	12 450	12 596	12 782	12 489	11 327	12 076
LU	10 248	8 136	8 036	11 484	11 308	10 713	10 629	10 130	10 670
LV	18 408	8 841	6 789	7 495	7 931	8 265	7 858	6 704	7 225
MT	1 846	2 186	2 320	2 611	2 628	2 697	2 652	2 510	2 507
NL	149 895	161 641	161 754	167 044	163 707	163 532	166 937	161 982	174 560
PL	348 407	347 123	301 829	296 128	306 716	303 327	299 133	290 387	302 570
PT	39 147	47 252	57 530	61 249	56 764	54 163	52 929	51 267	51 737
RO	148 406	110 753	81 916	89 444	92 859	90 925	88 988	74 933	72 811
SE	51 136	52 798	48 232	47 379	46 613	45 416	43 447	41 851	45 610
SI	13 618	14 093	14 247	15 519	15 659	15 764	16 790	15 240	15 598
SK	53 493	36 695	32 344	31 695	30 981	29 189	29 692	27 211	27 002
EU-15	3 129 372	3 067 551	3 137 042	3 242 709	3 219 810	3 163 521	3 103 583	2 884 148	2 960 012
EU-25	3 849 194	3 687 123	3 695 113	3 800 413	3 786 424	3 726 702	3 656 080	3 409 294	3 505 072
EU-27	4 070 925	3 851 173	3 818 733	3 936 024	3 926 988	3 868 598	3 794 134	3 527 081	3 619 999
EU-10	719 823	619 571	558 071	557 704	566 614	563 181	552 497	525 146	545 060
EU-2	221 731	164 050	123 620	135 611	140 564	141 895	138 054	117 787	114 927

Table 9 CO2 emissions for source category 1A Fuel Combustion

Source Category	1A	Fuel Combus	stion (Sector	al Approach					
Gas	CH4		Invento	ny data					Broxy
State	1000	1005	2000	2005	2006	2007	2008	2000	2010
State	1990	1995	2000	2005	2000 Ga	2007	2000	2009	2010
AT	22.0	20.4	15.0	13.9	12.2	11.6	11 7	11.4	12.2
BE	21.8	19.4	16.7	14.6	14.7	13.5	13.9	12.6	13.5
BG	16.8	11.9	11.6	12.8	13.7	12.8	12.7	11.8	11.6
CY	0.4	0.5	0.6	0.7	0.7	0.7	0.8	0.8	0.8
CZ	69.6	32.9	20.7	24.6	28.7	26.4	25.1	25.4	25.9
DE	220.7	89.9	71.2	89.4	101.2	110.9	120.6	120.2	125.1
DK	8.9	21.8	26.5	24.7	23.5	22.0	21.5	19.2	19.5
EE	3.0	1.9	1.8	1.7	1.6	1.7	1.7	1.7	2.1
ES	60.7	59.6	63.1	78.1	77.7	75.9	74.4	71.6	68.7
FI	14.6	14.2	13.6	14.4	14.8	14.6	14.1	14.7	16.7
FR	233.6	218.5	166.0	126.8	109.6	100.5	95.9	88.1	90.1
UK	128.6	93.3	78.9	57.7	55.8	56.5	57.1	52.2	53.6
GR	9.6	9.5	11.1	9.6	9.9	9.7	9.3	8.8	8.6
HU	34.3	17.8	10.9	14.4	15.1	9.7	10.3	10.7	11.0
IE	20.3	14.1	10.8	9.8	9.5	9.2	9.6	9.8	9.5
IT	65.5	72.2	64.2	57.1	57.7	62.1	62.2	61.8	62.3
LT	10.5	7.0	8.1	7.6	7.9	7.6	7.6	7.3	7.8
LU	1.4	1.3	1.2	1.1	1.0	0.9	0.9	0.8	0.9
LV	12.5	13.5	11.3	13.1	12.7	12.7	11.7	12.8	13.8
MT	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
NL	34.7	43.8	43.4	44.0	48.2	58.6	76.7	77.3	83.3
PL	114.4	188.4	120.0	125.5	139.3	130.2	135.8	138.0	143.8
PT	22.4	20.8	20.4	20.2	19.9	19.8	19.6	19.5	19.6
RO	21.0	51.0	36.4	42.3	40.4	41.7	50.6	49.1	47.8
SE	19.9	21.2	18.0	19.6	19.3	19.2	19.9	20.7	22.6
SI	7.8	7.5	6.7	5.5	5.4	5.3	5.3	5.2	5.3
SK	21.8	13.6	11.3	12.6	11.9	10.4	17.3	8.6	8.6
EU-15	884.6	719.9	620.1	580.9	575.0	584.9	607.3	588.7	606.1
EU-25	1 159.1	1 003.2	811.6	786.8	798.6	789.7	823.0	799.5	825.4
EU-27	1 196.9	1 066.2	859.6	841.9	852.6	844.2	886.4	860.4	884.8
EU-10	274.5	283.3	191.5	205.9	223.5	204.8	215.7	210.8	219.3
EU-2	37.8	62.9	48.0	55.1	54.0	54.5	63.4	61.0	59.4

Table 10CH4 emissions for source category 1A Fuel Combustion

Source Category	1A	Fuel Combustion (Sectoral Approach)									
Gas	N2O	0									
Member		Inventory data									
State	1990	1995 2000 2005 2006 2007 2008 2009									
					Gg						
AT	1.8	2.1	2.4	2.6	2.5	2.5	2.4	2.3	2.5		
BE	2.1	2.5	3.0	2.7	2.7	2.1	2.0	2.0	2.2		
BG	1.1	0.9	0.8	0.9	0.9	0.9	0.9	0.8	0.8		
CY	0.1	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.2		
CZ	2.4	2.2	2.7	3.7	3.7	3.9	3.7	3.8	3.8		
DE	24.4	22.8	21.5	20.5	20.9	20.9	20.1	18.8	19.6		
DK	1.0	1.2	1.2	1.2	1.3	1.3	1.3	1.2	1.2		
EE	0.3	0.2	0.2	0.3	0.2	0.2	0.2	0.3	0.3		
ES	5.0	6.9	9.4	8.7	8.7	8.8	8.6	7.8	7.5		
FI	3.2	3.2	3.1	3.1	3.4	3.3	3.1	2.9	3.3		
FR	11.8	13.5	14.2	15.5	15.2	15.0	15.2	14.1	14.4		
UK	19.5	19.3	17.7	17.0	17.0	16.4	15.4	14.0	14.4		
GR	2.4	2.7	2.8	2.9	3.0	2.9	2.8	2.4	2.3		
HU	0.9	0.9	1.2	1.8	1.7	1.6	1.7	1.7	1.7		
IE	0.8	1.0	1.2	1.4	1.4	1.3	1.3	1.2	1.2		
IT	14.3	16.0	17.1	16.5	16.7	16.6	15.9	15.1	15.3		
LT	1.1	0.5	0.3	0.4	0.4	0.4	0.5	0.4	0.4		
LU	0.2	0.2	0.3	0.4	0.4	0.4	0.3	0.3	0.3		
LV	0.5	0.4	0.3	0.4	0.4	0.4	0.4	0.4	0.4		
MT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
NL	1.6	2.4	2.4	2.5	2.5	2.4	2.5	2.5	2.7		
PL	6.2	6.8	6.2	6.2	6.3	6.3	6.4	6.4	6.7		
PT	1.4	1.9	2.0	2.0	1.9	1.9	2.0	2.0	2.0		
RO	1.1	1.5	1.1	1.2	1.3	1.3	1.4	1.3	1.2		
SE	4.2	4.5	4.2	4.2	4.3	4.2	4.2	4.2	4.6		
SI	0.5	0.6	0.6	0.6	0.6	0.6	0.7	0.6	0.6		
SK	0.9	0.7	0.5	0.6	0.6	0.5	0.6	0.5	0.5		
EU-15	93.8	100.2	102.5	101.2	101.8	99.9	97.1	91.0	93.5		
EU-25	106.8	112.6	114.7	115.3	116.0	114.2	111.7	105.2	108.2		
EU-27	109.0	115.0	116.6	117.4	118.2	116.5	114.0	107.3	110.3		
EU-10	12.9	12.4	12.2	14.1	14.2	14.3	14.5	14.2	14.7		
EU-2	2.2	2.4	1.9	2.1	2.2	2.3	2.3	2.1	2.1		

Table 11N2O emissions for source category 1A Fuel Combustion

The results in the energy sector show an increase of GHG emissions by 77.3 Mt CO₂eq or 2.6 % for EU-15 between 2009 and 2010. Table 12 indicates the sub-sectors contribution to this rise in emissions. Emissions from sub-sectors are estimated separately applying different methodologies as explained later. The largest increase in emissions occurred in the Manufacturing Industries while emissions from Energy Industries decreased. The emission reduction from Energy Industries is more pronounced in the EU-15 than in the EU-27 and in particular in those MS that still suffer from economic recession especially in Spain (-16.7 Mt CO₂eq), Greece (-3 Mt CO₂eq) and Italy (-2.4 Mt CO₂eq). In 2010 also transport emissions decreased slightly in EU-15 and EU-27 despite the general positive economic trend.

Table 12Change in GHG emissions between 2009 and 2010 for main source categories in the energy
sector

	Change 2009/10						
Sector Energy	EU	-15	EU-27				
	Mt CO ₂ eq	%	Mt CO ₂ eq	%			
1.A Fuel Combustion (Sectoral Approach)	77.0	2.6%	94.4	2.6%			
1.A.1. Energy Industries	-12.4	-1.2%	-0.8	-0.1%			
1.A.2. Manufacturing Industries and Construction	48.5	10.7%	53.4	10.0%			
1.A.3. Transport	-2.6	-0.3%	-3.7	-0.4%			
1.A.4 Other sector and 5 Other	23.8	3.8%	24.6	3.4%			
1.B. Fugitive Emissions from Fuels	0.3	0.7%	1.2	1.5%			
1.B.1 Solid Fuels	-0.1	-0.9%	0.1	0.2%			
1.B.2 Oil and Natural Gas	0.3	0.7%	1.0	1.8%			

Source: EEA's ETC ACM based on the 2011 EU greenhouse gas inventory to UNFCCC for 1990-2009 and early estimates for 2010

Figure 10 Change in GHG emissions between 2009 and 2010 for main source categories in the Energy sector

Source: EEA's ETC ACM based on the 2011 EU greenhouse gas inventory to UNFCCC for 1990-2009 and early estimates for 2010

According to BP data CO₂ emissions from energy consumption in the EU-27 rose by almost 3.1 % in 2010 compared to 2009. The emissions of all installations covered by the EU ETS indicate an increase of roughly 2.9 % in the EU-27 in the same period. After the sharp decline in emissions in 2008 and 2009, an increase of both energy use and emissions can be observed due to the economic recovery.

Emissions from coal consumption, being most CO₂ intensive, rose by 4.7 % compared to gas (8 %) and oil (- 1.2 %) consumption according to BP energy statistics. The majority of the coal is used by installations covered by the EU ETS, especially in power generation. Around 75 % of CO₂ emissions from 1A1a are from combustion of solid fuels. Thus, it may be concluded that the stronger increase in ETS / CITL emissions is due to the high share of solid fuel inputs in the EU ETS (see Figure 11).

Figure 11 Development of CO₂ emissions from energy consumption for the EU-27 between 2009 and 2010

Source: BP energy statistics and CITL data

.1.2 1.A.1 Energy Industries

.1.2.1 Methods and data sources used

The GHG emissions for source category 1.A.1 (Energy Industries) were estimated on the basis of a separate analysis of the following source categories

- Public Electricity and Heat Production (1.A.1.a)
- Petroleum Refining (1.A.1.b)
- Manufacture of Solid Fuels and Other Energy Industries (1.A.1.c)

The main data source for the estimation of CO₂ emissions from source category 1.A.1.a (Public Electricity and Heat Production) is an analysis of the verified emissions data reported by installations covered under the EU ETS and recorded in the CITL. Öko-Institut undertook a supplementary analysis on an installation-by-installation basis to separate the electricity generation installations from industrial combustion installations which are both reported under main activity code 1 in the ETS data (Combustion installations with a rated thermal input exceeding 20 MW combustion installations with a capacity of more than 20 MW). Based on these data the emissions were calculated as follows:

```
Equation 6
```

$E_{IAIa,CO2}^{Y} = \frac{E_{CITL(Ipow\sigma)}^{Y}}{E_{CITL(Ipow\sigma)}^{Y-I}} \cdot E_{IAIa,CO2}^{Y-I}$							
with							
$E^{Y}_{IAIa,CO2}$	CO2 emissions for source category 1A1a						
$E^{Y-l}_{IAIa,CO2}$	CO2 Emissions for source category 1A1a from previous year						
$E_{CITL()}^{Y}$	CITL emissions for electricity generationinstallations						
$E_{CITL()}^{Y-l}$	CITL emissions for electricity generationinstallations from previous year						

For Cyprus sufficient and consistent data was not available in the CITL data. Therefore, the inventory data from the last available submission was used.

Two different approaches were used for CH₄ emissions from source category 1.A.1.a (Public Electricity and Heat Production):

- 1. For the Member States with no strong correlation between CO₂ and CH₄ emissions in the previous years the average 2007-2009 of the CH₄ emission data from the last inventory submissions were used.
- 2. For the Member States with a significant correlation for the trends of CO₂ and CH₄ emissions in the previous years, the projection of CH₄ emissions is based on the follow-ing equation:

```
Equation 7
```

$$\begin{split} E_{1A1a,CH4}^{Y} &= \frac{E_{1A1a,CO2}^{Y}}{E_{1A1a,CO2}^{Y-1}} \cdot E_{1A1a,CH4}^{Y-1} \\ with \\ E_{1A1a,CH4}^{Y} & CH4 \ emissions \ for \ source \ category 1A1a \\ E_{1A1a,CH4}^{Y-1} & CH4 \ emissions \ for \ source \ category 1A1a \ from \ previous \ year \\ E_{1A1a,CO2}^{Y} & CO2 \ emissions \ for \ source \ category 1A1a \ (see above) \\ E_{1A1a,CO2}^{Y-1} & CO2 \ emissions \ for \ source \ category 1A1a \ from \ previous \ year \\ \end{split}$$

The first option was used for Austria, Belgium, the Czech Republic, Denmark, Estonia, Spain, Finland, United Kingdom, Hungary, Lithuania, Luxembourg, Poland, Portugal, Slovenia and Slovak Republic. For all other EU-27 Member States, the CH₄ emissions were estimated on the basis of the trend dynamics for CO₂ emissions (option 2).

For N₂O emissions from source category 1.A.1.a (Public Electricity and Heat Production), two different approaches were used

- 1. For the Member States with no strong correlation between CO₂ and N₂O emissions in the previous years, the average 2007-2009 of the N₂O emission data from the last inventory submission were used.
- 2. For the Member States with a significant correlation for the trends of CO₂ and N₂O emissions in the previous years, the projection of N₂O emissions is based on the following formula:

Equation 8

$E_{IA1a,N2O}^{Y} =$	$= \frac{E_{IAIa,CO2}^{Y}}{E_{IAIa,CO2}^{Y-1}} \cdot E_{IAIa,N2O}^{Y-1}$
with	
$E_{IAIa,N2O}^{Y}$	N2O emissions for source category1A1a
$E_{IAIa,N2O}^{Y-I}$	N2O emissions for source category1A1a from previous year
$E_{IAIa,CO2}^{Y}$	CO2 emissions for source category1A1a(seeabove)
$E_{IA1a,CO2}^{Y-I}$	CO2 emissions for source category1A1a from previous year

The first option was used for Austria, Belgium, Estonia, Spain, Finland, Hungary, Ireland, Italy, Lithuania, Luxembourg and the Slovak Republic. For all other EU-27 Member States, the N₂O emissions were estimated on the basis of trend dynamics for CO₂ emissions (option 2).

The main source for the estimation of CO₂ emissions from source category 1.A.1.b (Petroleum Refining) is CITL data. For Bulgaria, Lithuania, Portugal and the Slovak Republic sufficient and consistent data were not available. Therefore the average of the CO₂ emissions of the years 2007-2009 from the last inventory submission were used for these countries. For all other countries the emissions were calculated as follows:

$E_{1A1b,CO2}^{Y} = \frac{H}{H}$	$\frac{E_{CITL ref - inp}^{Y}}{E_{CITL ref - inp}^{Y-1}} \cdot E_{1A1b,CO2}^{Y-1}$
with	
$E_{1A1b,CO2}^{Y}$	CO2 emissions for source category 1A1b
$E_{IA1b,CO2}^{Y-1}$	CO2 Emissions for source category 1A1b from previous year
$E_{CITL ref-inp}^{Y}$	CITL emissions from input to refineries
$AR_{CITLref-inp}^{Y-1}$	CITL emissions from input to refineries for previous year

For CH₄ emissions from source category 1.A.1.b (Petroleum Refining) two different approaches were used

- 1. For the Member States with no strong correlation between CO₂ and CH₄ emissions in the previous years, the CH₄ emission data from the last inventory submission were used.
- 2. For the Member States with a significant correlation for the trends of CO₂ and CH₄ emissions in the previous years, the projection of CH₄ emissions is based on the following formula:

Equation 10

$$\begin{split} E_{1A1b,CH4}^{Y} &= \frac{E_{1A1b,CO2}^{Y}}{E_{1A1b,CO2}^{Y-1}} \cdot E_{1A1b,CH4}^{Y-1} \\ with \\ E_{1A1b,CH4}^{Y} & CH4 \ emissions \ for \ source \ category \ 1A1b \\ E_{1A1b,CH4}^{Y-1} & CH4 \ emissions \ for \ source \ category \ 1A1b \ from \ previous \ year \\ E_{1A1b,CO2}^{Y} & CO2 \ emissions \ for \ source \ category \ 1A1b \ (see \ above) \\ E_{1A1b,CO2}^{Y-1} & CO2 \ emissions \ for \ source \ category \ 1A1b \ from \ previous \ year \end{split}$$

The first option was used for Denmark and Slovenia. For all other EU-27 Member States that report CH₄ emissions, emissions were estimated on the basis of the trend dynamics for CO₂ emissions (option 2).

Two different approaches were used for N₂O emissions from source category 1.A.1.b (Petroleum Refining):

1. For the Member States with no strong correlation between CO₂ and N₂O emissions in the previous years the N₂O emission data from the last inventory submission were used.

2. For the Member States with a significant correlation for the trends of CO₂ and N₂O emissions in the previous years, the projection of N₂O emissions is based on the following formula.

Equation 11

$$\begin{split} E_{IAIb,N2O}^{Y} &= \frac{E_{IAIb,CO2}^{Y}}{E_{IAIb,CO2}^{Y-1}} \cdot E_{IAIb,N2O}^{Y-1} \\ with \\ E_{IAIb,N2O}^{Y} & N2O \ emissions \ for \ source \ category 1A1b \\ E_{IAIb,N2O}^{Y-1} & N2O \ emissions \ for \ source \ category 1A1b \ from \ previous \ year \\ E_{IAIb,CO2}^{Y} & CO2 \ emissions \ for \ source \ category 1A1b \ (see above) \\ E_{IAIb,CO2}^{Y-1} & CO2 \ emissions \ for \ source \ category 1A1b \ from \ previous \ year \end{split}$$

The first option was used for Austria, Belgium, Bulgaria, the Netherlands, Portugal, Slovenia, and the Slovak Republic. For all other EU-27 Member States that report N₂O emissions, the N₂O emissions were estimated on the basis of the trend dynamics for CO₂ emissions (option 2).

For the source category 1.A.1.c (Manufacture of Solid Fuels and Other Energy Industries) for CO_2 , CH_4 as well as N₂O the data from the last inventory submission were used.

The total greenhouse gas emissions for source category 1.A.1 (Energy Industries) were calculated as the sum of the estimates for the source categories 1.A.1.a, 1.A.1.b and 1.A.1.c (see above).

.1.2.2 Results for 2010

Table 13, Table 14 and Table 15 show the results for the proxy inventory in 2010 for 1A1 Energy Industries compared to the inventory time series for the EU and all Member States for CO_2 , CH_4 and N_2O emissions respectively.

Source Category	1A1	1. Energy In	dustries								
Gas	CO2										
Member		Inventory data Proxy								Proxy	
State	1990	1995	2000	2004	2005	2006	2007	2008	2009	2010	
		Gg									
AT	13 792	12 919	12 239	16 114	16 096	15 161	13 856	13 649	12 649	13 766	
BE	29 826	29 234	28 152	29 551	29 175	27 688	27 418	25 342	26 359	24 538	
BG	38 652	27 181	24 028	26 843	27 024	27 335	30 775	31 899	29 553	31 658	
CY	1 781	2 206	2 987	3 339	3 472	3 653	3 802	3 967	3 992	3 992	
CZ	57 707	56 621	59 616	63 280	63 851	63 327	66 025	62 001	58 652	60 227	
DE	423 418	365 317	356 812	380 105	371 656	373 008	382 684	362 143	338 535	347 599	
DK	25 952	32 046	25 414	25 766	22 566	30 463	25 827	23 705	23 698	23 207	
EE	28 571	14 156	11 911	13 160	12 392	11 688	13 754	12 409	10 721	15 362	
ES	77 354	86 052	104 935	115 484	125 202	116 325	122 260	105 160	89 066	72 267	
FI	19 057	23 922	21 899	32 634	21 653	32 523	30 475	23 927	25 120	29 777	
FR	65 005	56 564	62 657	61 686	67 268	64 005	64 197	62 234	59 838	58 356	
UK	234 194	200 277	195 507	209 432	209 792	214 383	210 082	204 272	179 979	182 898	
GR	42 993	44 770	54 629	57 145	57 974	55 787	59 251	57 619	54 620	51 585	
HU	22 060	23 736	23 396	20 239	18 558	19 458	20 317	19 425	16 212	16 636	
IE	11 159	13 317	16 050	15 284	15 657	14 907	14 407	14 495	12 926	12 327	
IT	136 503	139 841	151 894	159 962	160 133	161 510	161 140	157 278	132 368	129 950	
LT	13 960	6 577	5 202	5 502	5 754	5 303	4 821	4 870	4 894	5 697	
LU	33	91	179	1 273	1 252	1 321	1 181	1 007	1 155	1 201	
LV	6 268	3 418	2 476	2 057	2 048	2 073	1 944	1 917	1 872	2 455	
MT	1 350	1 582	1 665	1 924	1 961	1 976	2 017	1 976	1 858	1 839	
NL	52 501	61 416	63 630	69 943	67 313	62 409	65 129	65 204	64 234	64 396	
PL	228 318	190 870	176 566	180 453	178 693	183 606	181 102	173 546	166 693	171 716	
PT	15 948	19 308	20 887	21 812	24 848	21 911	19 810	19 650	19 505	13 907	
RO	97 771	67 169	46 657	49 000	46 269	48 788	48 438	47 410	39 146	36 122	
SE	9 569	10 859	8 423	11 158	10 274	10 016	9 571	9 504	9 897	11 494	
SI	6 239	5 601	5 473	6 286	6 297	6 350	6 567	6 356	6 056	6 176	
SK	16 108	11 937	12 247	12 864	11 843	11 167	10 286	10 792	9 808	9 101	
EU-15	1 157 305	1 095 933	1 123 309	1 207 347	1 200 860	1 201 418	1 207 287	1 145 190	1 049 950	1 037 268	
EU-25	1 539 667	1 412 635	1 424 849	1 516 452	1 505 727	1 510 020	1 517 921	1 442 449	1 330 709	1 330 471	
EU-27	1 676 090	1 506 985	1 495 535	1 592 295	1 579 021	1 586 143	1 597 134	1 521 757	1 399 408	1 398 251	
EU-10	382 362	316 703	301 540	309 105	304 868	308 602	310 634	297 259	280 759	293 202	

Table 13CO2 emissions for 1.A.1 Energy Industries
Source Category	1A1	1. Energy Inc	dustries							
Gas	CH4									
Member			I	nventory dat	а					Proxy
State	1990	1995	2000	2004	2005	2006	2007	2008	2009	2010
					(G				
AT	0.16	0.16	0.16	0.27	0.25	0.29	0.30	0.31	0.33	0.31
BE	0.79	0.73	1.09	0.65	0.65	0.69	1.02	0.82	0.96	0.99
BG	0.54	0.34	0.27	0.29	0.30	0.30	0.33	0.35	0.34	0.37
CY	0.07	0.08	0.11	0.13	0.14	0.14	0.15	0.15	0.15	0.15
CZ	0.67	0.70	0.73	1.09	0.99	1.01	1.11	1.15	1.23	1.16
DE	13.54	14.67	16.81	40.29	45.50	55.00	66.51	74.61	75.67	78.03
DK	0.50	11.39	14.64	14.08	12.40	11.49	9.57	10.17	8.87	9.53
EE	0.36	0.30	0.31	0.40	0.44	0.37	0.35	0.40	0.46	0.40
ES	3.08	2.84	3.63	6.27	7.09	7.54	7.55	8.04	7.08	7.18
FI	0.39	0.62	0.73	1.18	0.97	1.19	1.09	1.03	0.96	1.03
FR	3.68	2.88	2.05	2.22	2.26	2.18	2.21	2.03	2.03	1.99
UK	9.61	11.30	12.51	13.64	13.17	11.29	11.72	11.59	11.84	11.79
GR	0.60	0.65	0.79	0.80	0.83	0.84	0.90	0.89	0.79	0.75
HU	0.64	0.60	0.52	0.63	1.09	0.83	1.01	1.16	1.21	1.13
IE	0.26	0.31	0.44	0.36	0.37	0.35	0.35	0.35	0.32	0.30
IT	9.27	8.63	6.85	6.21	6.34	6.17	5.72	5.65	5.15	5.03
LT	0.40	0.21	0.18	0.32	0.32	0.34	0.34	0.38	0.43	0.38
LU	0.04	0.03	0.04	0.07	0.07	0.07	0.07	0.07	0.07	0.07
LV	0.27	0.23	0.22	0.21	0.18	0.20	0.19	0.19	0.19	0.25
MT	0.04	0.06	0.07	0.08	0.08	0.08	0.08	0.08	0.07	0.07
NL	2.78	3.82	4.39	5.05	5.97	5.23	4.80	4.82	5.29	5.31
PL	3.22	2.32	2.15	2.39	2.67	2.84	2.92	3.24	3.68	3.68
PT	0.21	0.25	0.30	0.35	0.39	0.38	0.35	0.38	0.38	0.36
RO	1.95	1.33	0.88	0.92	0.83	0.96	0.79	0.79	0.66	0.61
SE	1.05	1.80	2.19	3.10	3.41	3.54	3.55	3.94	4.23	5.11
SI	0.09	0.08	0.06	0.07	0.08	0.09	0.09	0.14	0.11	0.11
SK	0.27	0.26	0.25	0.29	0.25	0.24	0.24	0.28	0.31	0.25
EU-15	45.97	60.09	66.62	94.55	99.68	106.27	115.70	124.70	123.96	127.79
EU-25	52.00	64.92	71.22	100.15	105.92	112.41	122.18	131.86	131.81	135.38
EU-27	54.49	66.59	72.37	101.37	107.06	113.67	123.31	133.00	132.81	136.36
EU-10 FU-2	0.03 2.49	4.63	4.00 1 15	5.01 1.22	o.∠4 1.13	1 26	0.48 1 12	1 14	7.05 1.00	7.59

Table 14CH4 emissions for 1.A.1 Energy Industries

Source Category	1A1	1. Energy Inc	dustries							
Gas	N2O									
Member			I	nventory dat	а					Proxy
State	1990	1995	2000	2004	2005	2006	2007	2008	2009	2010
		•			Ģ	G				
AT	0.15	0.16	0.16	0.24	0.27	0.28	0.30	0.32	0.31	0.31
BE	0.66	0.66	0.80	0.76	0.50	0.47	0.46	0.43	0.56	0.59
BG	0.42	0.32	0.29	0.33	0.33	0.34	0.39	0.40	0.36	0.39
CY	0.02	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
CZ	0.81	0.79	0.83	0.93	0.93	0.93	0.98	0.94	0.90	0.93
DE	14.25	12.59	12.02	12.63	12.34	12.60	13.08	12.31	11.55	11.89
DK	0.27	0.36	0.36	0.38	0.35	0.42	0.37	0.36	0.36	0.36
EE	0.07	0.05	0.05	0.07	0.09	0.08	0.07	0.08	0.09	0.08
ES	0.91	1.80	2.03	2.28	2.42	2.34	2.38	2.37	2.11	2.26
FI	0.39	0.61	0.66	1.00	0.82	1.08	1.06	0.97	0.93	0.99
FR	1.94	1.80	2.15	2.28	2.41	2.24	2.32	2.23	2.18	2.14
UK	6.51	5.34	4.93	5.10	5.27	5.47	5.07	4.73	4.26	4.31
GR	0.50	0.51	0.60	0.63	0.63	0.59	0.62	0.60	0.59	0.55
HU	0.23	0.24	0.23	0.23	0.26	0.22	0.25	0.26	0.26	0.26
IE	0.24	0.25	0.26	0.30	0.34	0.36	0.39	0.45	0.45	0.43
IT	1.67	1.67	1.67	1.91	1.90	1.89	1.87	1.85	1.65	1.66
LT	0.09	0.04	0.04	0.07	0.07	0.07	0.06	0.07	0.08	0.07
LU	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
LV	0.05	0.04	0.03	0.03	0.02	0.03	0.03	0.02	0.03	0.03
MT	0.02	0.01	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.01
NL	0.45	0.54	0.63	0.73	0.78	0.77	0.78	0.80	0.83	0.83
PL	3.32	2.79	2.56	2.59	2.62	2.70	2.68	2.61	2.59	2.68
PT	0.20	0.25	0.40	0.44	0.48	0.45	0.41	0.43	0.44	0.30
RO	0.71	0.61	0.43	0.49	0.47	0.53	0.51	0.52	0.44	0.41
SE	1.06	1.13	1.00	1.32	1.30	1.35	1.30	1.35	1.46	1.75
SI	0.08	0.08	0.07	0.08	0.09	0.09	0.09	0.09	0.09	0.09
SK	0.20	0.11	0.11	0.13	0.13	0.12	0.10	0.13	0.10	0.11
EU-15	29.19	27.68	27.67	29.99	29.82	30.32	30.42	29.21	27.69	28.37
EU-25	34.06	31.86	31.64	34.15	34.07	34.59	34.73	33.47	31.86	32.66
EU-27	35.19	32.79	32.36	34.97	34.87	35.45	35.63	34.39	32.67	33.45
EU-10	4.87	4.17	3.97	4.16	4.24	4.27	4.31	4.27	4.18	4.29

Table 15N2O emissions for 1.A.1 Energy Industries

.1.3 1.A.2 Manufacturing Industries and Construction

.1.3.1 Methods and data sources used

The main source for the estimation of CO₂ emissions from source category 1.A.2 (Manufacturing Industries and Construction) are the verified emissions data from the CITL. To calculate CO₂ emissions from 1A2, total verified emissions without power installations and refineries are used.

Based on these data the emissions were calculated as follows:

```
Equation 12
```

$E_{IA2,CO2}^{Y} = \frac{H}{H}$	$\sum_{\substack{Z \in TTL(\dots) \\ Z \in TTL(\dots)}}^{Z^{Y}} \cdot E_{1A2,CO2}^{Y-1}$
with	
$E^{Y}_{1A2,CO2}$	CO2 emissions for source category1A2
$E^{Y-1}_{1A2,CO2}$	CO2 emissions for source category1A2 from previous year
$E_{CITL()}^{Y}$	CITL emissions for installations reported under different main activities
$E_{CITL()}^{Y-1}$	CITL emissions for installations reported under different
	main activities from previous year

For Cyprus and for Malta the inventory data from the last available submission was used.

For CH4 emissions from source category 1.A.2 two different approaches were used

- 1. For the Member States with no strong correlation between CO₂ and CH₄ emissions in the previous years, the average 2007-2009 of the CH₄ emission data from the last inventory submission were used.
- 2. For the Member States with a significant correlation for the trends of CO₂ and CH₄ emissions in the previous years, the projection of CH₄ emissions is based on the following formula:

Equation 13

$$\begin{split} E_{IA2,CH4}^{Y} &= \frac{E_{IA2,CO2}^{Y}}{E_{IA2,CO2}^{Y-1}} \cdot E_{IA2,CH4}^{Y-1} \\ with \\ E_{IA2,CH4}^{Y} & CH4 \ emissions \ for \ source \ category \ IA2 \\ E_{IA2,CH4}^{Y-1} & CH4 \ emissions \ for \ source \ category \ IA2 \ from \ previous \ year \\ E_{IA2,CO2}^{Y} & CO2 \ emissions \ for \ source \ category \ IA2 \ (see \ above) \\ E_{IA2,CO2}^{Y-1} & CO2 \ emissions \ for \ source \ category \ IA2 \ from \ previous \ year \end{split}$$

The first option was used for Austria, Belgium, Bulgaria, Cyprus, Denmark, Estonia, Finland, France, Greece, Italy, Lithuania, Latvia, Malta, Sweden and the Slovak Republic. For all other EU-27 Member States the CH₄ emissions were estimated on the basis of the trend dynamics for CO₂ emissions (option 2).

Two different approaches were used for N2O emissions from source category 1.A.2:

 For the Member States with no strong correlation between CO₂ and N₂O emissions in the previous years the average 2007-2009 of the N₂O emission data from the last inventory submission were used. 2. For the Member States with a significant correlation for the trends of CO₂ and N₂O emissions in the previous years, the projection of N₂O emissions is based on the following formula.

Equation 14

$$\begin{split} E_{1A2,N20}^{Y} &= \frac{E_{1A2,C02}^{Y}}{E_{1A2,C02}^{Y-1}} \cdot E_{1A2,N20}^{Y-1} \\ \text{with} \\ E_{1A2,N20}^{Y} & N_{2}O \text{ emissions for source category 1A2} \\ E_{1A2,N20}^{Y-1} & N_{2}O \text{ emissions for source category 1A2} \text{ from previous year} \\ E_{1A2,N20}^{Y} & CO_{2} \text{ emissions for source category 1A2 (see above)} \\ E_{1A2,CO2}^{Y} & CO_{2} \text{ emissions for source category 1A2 (see above)} \\ E_{1A2,CO2}^{Y-1} & CO_{2} \text{ emissions for source category 1A2 from previous year} \end{split}$$

The first option was used for Belgium, Bulgaria, Luxembourg, Latvia, Malta, the Netherlands, Romania and Slovenia. For all other EU-27 Member States the N₂O emissions were estimated on the basis of the trend dynamics for CO₂ emissions (option 2).

.1.3.2 Results for 2010

Table 16, Table 17 and Table 18 show the results for the proxy inventory in 2010 for 1A2 Manufacturing Industries and construction compared to the inventory time series for the EU and all Member States for CO₂, CH₄ and N₂O emissions respectively.

Source Category	1A2	2. Manufactu	ring Industrie	s and Constru	uction					
Gas	CO2									
Member			l	nventory dat	а					Proxy
State	1990	1995	2000	2004	2005	2006	2007	2008	2009	2010
					(Эg				
AT	12 682	13 483	13 717	14 829	16 210	15 981	15 799	15 815	14 270	16 594
BE	32 231	32 129	32 728	29 933	28 204	28 240	27 092	27 494	19 239	22 363
BG	20 588	17 818	10 017	9 754	9 465	9 842	10 129	6 943	3 606	3 277
CY	680	990	2 059	1 098	1 138	1 123	1 045	1 068	671	671
CZ	46 616	32 766	28 185	18 576	18 975	17 708	16 845	15 994	15 614	15 942
DE	175 635	134 373	117 692	108 170	112 091	116 845	120 430	117 528	101 804	119 950
DK	5 412	5 829	5 953	5 736	5 438	5 563	5 389	4 905	3 915	4 082
EE	2 258	793	572	658	714	717	1 183	1 058	607	668
ES	46 279	52 895	57 949	70 421	71 327	69 633	69 663	65 868	57 759	56 609
FI	13 172	11 957	11 735	11 436	11 150	11 443	11 290	10 635	8 189	10 322
FR	82 224	79 091	80 888	76 888	76 350	74 480	73 101	70 690	62 748	67 939
UK	99 942	92 643	92 201	83 257	83 332	81 827	80 425	78 138	67 392	70 100
GR	9 566	9 216	9 722	8 492	10 171	10 384	10 102	9 255	7 412	6 866
HU	14 256	10 478	8 039	7 651	8 297	6 958	6 724	6 562	5 408	5 550
IE	3 943	4 304	5 567	5 806	5 908	5 798	6 029	5 684	4 525	5 273
IT	86 480	86 023	83 699	84 478	80 392	78 958	75 731	72 785	56 433	64 029
LT	5 954	1 564	1 010	1 170	1 265	1 463	1 434	1 232	993	1 110
LU	6 278	3 344	1 607	1 818	1 722	1 750	1 540	1 422	1 144	1 173
LV	3 742	1 866	1 167	1 140	1 164	1 205	1 223	1 131	883	1 139
MT	59	60	57	59	123	84	106	102	67	67
NL	33 027	28 871	27 375	27 620	27 398	27 713	27 992	27 543	24 941	27 813
PL	42 958	62 869	47 479	38 061	31 782	33 096	34 913	33 010	30 192	33 013
PT	9 153	10 168	11 883	10 660	10 366	9 912	9 993	9 611	8 279	9 505
RO	31 958	26 695	17 614	21 691	20 679	19 303	18 498	17 224	11 848	12 946
SE	11 698	13 217	12 296	11 701	11 052	11 284	10 787	9 902	8 237	11 424
SI	3 085	2 587	2 240	2 242	2 450	2 550	2 311	2 269	1 888	1 837
SK	19 712	12 292	8 480	7 380	7 326	8 558	7 657	7 031	6 311	6 644
EU-15	627 723	577 542	565 011	551 244	551 111	549 812	545 364	527 274	446 286	494 042
EU-25	767 045	703 808	664 299	629 281	624 346	623 273	618 806	596 730	508 920	560 682
EU-27	819 591	748 321	691 931	660 727	654 490	652 418	647 433	620 896	524 374	576 905
EU-10	139 321	126 265	99 288	78 037	73 234	73 461	73 442	69 455	62 634	66 640
EU-2	JZ 340	44 013	21 032	31 440	30 144	29 145	20 02/	24 10/	15 454	10 223

Table 16 CO ₂ emissions from 1A2 Manufacturing Industries and Construction

Gas CH4 Member Inventory data State 1990 1995 2000 2004 2005 2006 2007	2009	Proxy 2010
Member Inventory data State 1990 1995 2000 2004 2005 2006 2007 2008	2009	Proxy 2010
State 1990 1995 2000 2004 2005 2006 2007 2008	2009 0.63	2010
	0.63	
Gg	0.63	
AT 0.34 0.39 0.44 0.56 0.61 0.62 0.61 0.65		0.63
BE 3.80 3.05 3.50 3.60 3.16 3.48 3.13 3.69	2.40	3.07
BG 1.17 1.11 0.61 0.71 0.71 0.74 0.77 0.58	0.36	0.57
CY 0.02 0.03 0.07 0.04 0.04 0.04 0.04 0.04	0.03	0.04
CZ 4.31 3.30 3.03 1.81 2.00 1.93 1.87 1.80	1.78	1.81
DE 11.27 6.60 6.47 7.24 7.46 8.32 7.86 7.64	6.67	7.86
DK 0.40 0.47 1.19 1.14 1.06 0.92 0.70 0.74	0.69	0.71
EE 0.04 0.01 0.01 0.02 0.02 0.02 0.03 0.03	0.01	0.02
ES 3.90 7.32 17.10 28.18 30.97 30.91 29.59 28.67	26.44	25.91
FI 0.61 0.69 0.72 0.69 0.65 0.71 0.66 0.62	0.52	0.60
FR 11.53 10.50 10.85 11.16 9.66 7.90 9.84 8.19	6.12	8.05
UK 15.45 15.55 15.22 13.39 13.11 13.27 13.03 12.27	10.30	10.71
GR 0.43 0.42 0.48 0.42 0.49 0.46 0.45 0.49	0.42	0.45
HU 1.16 0.84 0.69 0.67 0.78 0.72 0.74 0.73	0.58	0.60
IE 0.27 0.24 0.34 0.39 0.45 0.43 0.42 0.39	0.34	0.39
IT 6.82 7.02 5.72 5.76 6.28 6.24 6.53 6.25	4.18	5.65
LT 0.35 0.11 0.10 0.23 0.23 0.24 0.24 0.21	0.16	0.21
LU 0.16 0.10 0.08 0.09 0.11 0.12 0.11 0.10	0.08	0.10
LV 0.26 0.17 0.16 0.23 0.26 0.29 0.27 0.28	0.33	0.29
MT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.00	0.00
NL 2.76 2.74 3.03 2.64 2.64 2.67 2.65 2.67	2.58	2.87
PL 3.23 5.91 4.24 3.61 3.18 3.56 3.71 3.36	3.33	3.64
PT 1.85 2.19 2.52 2.63 2.64 2.67 2.79 2.68	2.67	3.07
RO 2.24 2.30 1.52 1.79 1.69 1.62 1.65 1.42	1.09	1.19
SE 2.19 2.72 2.02 2.11 2.07 2.34 2.24 2.25	2.23	2.24
SI 0.36 0.26 0.22 0.34 0.37 0.35 0.30 0.30	0.26	0.25
SK 1.77 1.23 0.89 0.80 0.81 0.83 0.84 0.77	0.67	0.76
EU-15 61.76 59.99 69.68 80.01 81.35 81.04 80.60 77.29	66.25	72.31
EU-25 73.26 71.87 79.09 87.76 89.04 89.03 88.64 84.81	73.40	79.92
EU-27 76.67 75.27 81.23 90.26 91.44 91.40 91.06 86.81	74.84	81.68
EU-10 11.50 11.87 9.41 7.75 7.68 7.99 8.04 7.52	7.15	7.61

Table 17CH4 emissions from 1A2 Manufacturing Industries and Construction

Source Category	1A2	2. Manufactu	iring Industrie	s and Constru	ction					
Gas	N2O									
Member				nventory dat	a					Proxy
State	1990	1995	2000	2004	2005	2006	2007	2008	2009	2010
					G	g				
AT	0.26	0.31	0.43	0.40	0.47	0.49	0.51	0.52	0.48	0.56
BE	0.19	0.19	0.19	0.24	0.24	0.27	0.40	0.36	0.31	0.36
BG	0.16	0.14	0.09	0.11	0.10	0.10	0.11	0.07	0.04	0.07
CY	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01
CZ	0.58	0.42	0.37	0.22	0.24	0.23	0.22	0.21	0.22	0.22
DE	4.56	3.24	2.57	2.51	2.64	2.81	2.72	2.71	2.43	2.87
DK	0.17	0.14	0.14	0.13	0.12	0.14	0.13	0.12	0.10	0.10
EE	0.01	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01
ES	1.34	1.51	1.72	2.05	2.07	2.07	2.08	1.94	1.71	1.67
FI	0.56	0.54	0.61	0.59	0.55	0.53	0.50	0.48	0.40	0.50
FR	2.46	2.49	2.61	2.58	2.69	2.82	2.73	2.72	2.52	2.73
UK	5.25	4.82	4.35	4.37	4.32	4.34	4.36	4.17	3.60	3.74
GR	0.14	0.16	0.17	0.14	0.15	0.15	0.15	0.15	0.13	0.12
HU	0.10	0.08	0.06	0.06	0.06	0.07	0.07	0.07	0.06	0.06
IE	0.04	0.04	0.05	0.06	0.07	0.06	0.06	0.06	0.05	0.06
IT	4.93	4.52	4.66	5.03	5.02	5.05	4.98	4.64	3.98	4.52
LT	0.04	0.01	0.01	0.03	0.03	0.03	0.03	0.02	0.02	0.02
LU	0.05	0.05	0.08	0.14	0.13	0.12	0.08	0.06	0.04	0.04
LV	0.03	0.02	0.02	0.02	0.03	0.03	0.03	0.03	0.04	0.03
MT	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NL	0.10	0.08	0.07	0.07	0.07	0.08	0.08	0.10	0.10	0.09
PL	0.79	1.11	0.78	0.68	0.61	0.66	0.68	0.67	0.68	0.74
PT	0.22	0.24	0.29	0.30	0.30	0.30	0.32	0.32	0.30	0.34
RO	0.18	0.17	0.13	0.16	0.15	0.16	0.16	0.13	0.10	0.13
SE	1.70	1.92	1.69	1.59	1.58	1.68	1.61	1.59	1.48	2.06
SI	0.08	0.07	0.08	0.09	0.09	0.12	0.09	0.10	0.08	0.09
SK	0.19	0.12	0.08	0.08	0.08	0.08	0.07	0.07	0.06	0.07
EU-15	21.96	20.24	19.64	20.22	20.42	20.90	20.72	19.93	17.63	19.76
EU-25	23.78	22.08	21.06	21.40	21.57	22.13	21.94	21.13	18.79	21.01
EU-27	24.12	22.39	21.28	21.67	21.82	22.39	22.21	21.32	18.93	21.21
EU-10	1.82	1.84	1.42	1.18	1.15	1.22	1.22	1.19	1.17	1.25
EU-2	0.34	0.31	0.22	0.27	0.26	0.26	0.27	0.19	0.13	0.20

Table 18N2O emissions from 1A2 Manufacturing Industries and Construction

.1.4 1.A.3 Transport

.1.4.1 Methods and data sources used

The main sources for the estimation of CO₂ emissions from source category 1.A.3 (Transport) are the following Eurostat data, extracted from Eurostat's database:

- Monthly data for the internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels;
- Few amendments were made to that data source in order to fill data gaps and replace mismatching data (for details cf. Table 54 in Annex I, p. 132).

Based on these data source three slightly different options to calculate the CO₂ emissions were developed. Out of these, the most suitable approach was chosen for each Member State taking into account the performance of the respective approximation approaches to reproduce the reported emissions of previous years,

Option 1 for calculating CO₂ emissions (Equation 15) was chosen for the majority of Member States (Belgium, Denmark, Finland, France, Germany, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Slovakia, Slovenia, Spain and Sweden):

Equation 15	5
$E_{1A3,CO2}^{Y} = (-$	$\frac{E_{\rm MS,CO2}^{Y} + E_{\rm AD,CO2}^{Y}}{E_{\rm MS,CO2}^{Y-1} + E_{\rm AD,CO2}^{Y-1}}) \cdot E_{\rm 1A3b,c,d,e,CO2}^{Y-1} + \frac{E_{\rm K,CO2}^{Y}}{E_{\rm K,CO2}^{Y-1}} \cdot E_{\rm 1A3a,CO2}^{Y-1}$
with	
$E_{1A3,CO2}^{Y}$	CO2emissions for source category 1A3
$E^{Y}_{MS,CO2}$	CO_2 emissions motor spirit (monthly total of internal market deliveries) $x CO_2$ factor
$E^{Y}_{AD,CO2}$	CO_2 emissions automotive diesel(monthly total of internal market deliveries) x CO_2 factor
$E_{MS,CO2}^{Y-1}$	CO2 emissions motor spirit(monthly total of internal market deliveries) x CO2 factor
$E_{\scriptscriptstyle AD,CO2}^{\scriptscriptstyle Y-1}$	CO_2 emissions automotive diesel (monthly total of internal market deliveries) x CO_2 factor
$E^{Y-1}_{1A3b,c,d,e,CO2}$	CO2 emissions for sourcecategory 1A3b,c,d,e from previousyear
$E_{K,CO2}^{Y}$	CO2 emissions kerosene (monthly total of internal market deliveries) x CO2 factor
$E_{\rm K,CO2}^{\rm Y-1}$	CO2 emissions kerosene (monthly total of internal market deliveries) xCO2 factor
$E^{Y-1}_{1A3a,CO2}$	CO2 emissions for source category 1A3a from previousyear(civil aviation)
Country- sp	pecific CO ₂ factors are calculated using net calorific values and implied emission factors
based on th	e CRF submissions of the previous year

Option 2 (Equation 16) was chosen for Bulgaria, Cyprus, Czech Republic, Estonia, Poland, Portugal and the United Kingdom:

Equation 16

$E_{1A3,CO2}^{Y} = Fw$	$arphi_{ m t}\cdot E_{ m IA3,CO2}^{Y-1}$
with	
$E_{1A3,CO2}^{Y}$	CO2 emissions for source category1A3
Fw _t	Weighted Factor
$E^{Y-l}_{IA3,CO2}$	CO2emissions for sourcecategory1A3 from previousyear
$Fw_{t} = \frac{C_{\text{moto}}^{Y}}{C_{\text{moto}}^{Y-1}}$	$\frac{c_{\text{spirit}}}{c_{\text{t, motor spirit}}} \cdot S_{t, \text{ motor spirit}}^{Y} + \frac{C_{\text{automotive diesel}}^{Y}}{C_{\text{rubonotive diesel}}} \cdot S_{t, \text{ automotive diesel}}^{Y} + \frac{C_{\text{kerosene}}^{Y}}{C_{\text{temperate}}^{Y-1}} \cdot S_{t, \text{kerosene}}^{Y}$
with	spint automotivenese krosuie
$C_{ m motorspirit}^{Y}$	Consumption of motor spirit (monthly total of internal market deliveries)
$C_{ m motorspirit}^{ m Y-1}$	Consumption of motor spirit (monthly total of internal market deliveries) previous year
$S_{t, m motor spirit}^{Y}$	Share (mass) of motor spirit in total consumption of regarded fuels
$C_{\rm automotive diesel}^{Y}$	Consumption of automotive diesel (monthly total of internal market deliveries)
$C_{ m automotive diesel}^{Y-1}$	$Consumption of \ automotive diesel (monthly \ total \ of \ internal \ market \ deliveries) \ previous \ year$
$S_{t, automotive diesel}^{Y}$	Share (mass) of automotivedieselin total consumption of regarded fuels
$C_{\rm kerosene}^{Y}$	Consumption of kerosene(monthly total of internal market deliveries)
$C_{ m kerosene}^{ m Y-1}$	Consumption of kerosene(monthly total of internal market deliveries) previous year
$S_{t, \text{kerosene}}^{Y}$	Share (mass) of kerosenein total consumption of regarded fuels

Option 3 for calculating CO₂ emissions (Equation 17) was finally chosen for Austria, Greece, Hungary and Romania:

Equation 17

v	C_{1}^{Y}
$E_{1A3,CO2}^{T} = Fv$	$v_{\rm m} \cdot E_{\rm IA3b,c,d,e,CO2}^{I-I} + \frac{-1}{C_{\rm kerosene}^{Y-I}} \cdot E_{\rm IA3a,CO2}^{I-I}$
with	
$E_{1A3,CO2}^{Y}$	CO2 emissions for source category1A3
Fw _m	Weighted Factor
$E^{Y-I}_{IA3b,c,d,e,CO2}$	CO2 emissions for sourcecategory 1A3b,c,d,e from previousyear
$C_{\rm kerosene}^{Y}$	Consumptionof kerosene(monthly total of internal market deliveries)
$C_{ m kerosene}^{Y-1}$	Consumptionof kerosene(monthly total of internal market deliveries) previous year
$E^{Y-l}_{IA3a,CO2}$	CO2 emissions for source category 1A3a from previous year(civil aviation)
$Fw = \frac{C_{\text{mot}}^{Y}}{C_{\text{mot}}}$	$\frac{D^{\text{rspirit}}}{D^{\text{rspirit}}} \cdot S^{Y} + \frac{C_{\text{automotive diesel}}^{Y} \cdot S^{Y}}{D^{\text{rspirit}}} \cdot S^{Y}$
$C_{\rm mot}^{Y-1}$	$C_{\text{automotive diesel}}^{\text{m, motor spint}} C_{\text{automotive diesel}}^{\text{y}_{-1}}$
with	
$C_{ m motorspirit}^{Y}$	Consumption of motor spirit (monthly total of internal market deliveries)
$C_{ m motorspirit}^{ m Y-1}$	Consumption of motor spirit(monthly total of internal market deliveries) previous year
$S_{ m m,motorspirit}^{ m Y}$	Share (mass) of motor spirit in total consumption of motor spirit and automotivediesel
$C_{\text{automotive diesel}}^{Y}$	Consumption of automotive diesel (monthly total of internal market deliveries)
$C_{ m automotive diesel}^{Y-1}$	Consumption of automotive diesel (monthly total of internal market deliveries) previous year
$S_{\rm m,automotive dies}^{Y}$	el Share (mass) of automotivedieselin total consumption of motor spirit and automotivediesel

The estimation for CH₄ emissions from source category 1.A.3 (Transport) is based on the approximated trend of CO₂ emissions and depicted in Equation 18:

Equation 18

$E_{1A3,CH4}^{Y} =$	$(\frac{E_{1A3,CO2}^{Y}}{E_{1A3,CH4}^{Y-1}}) \cdot E_{1A3,CH4}^{Y-1}$
with	-1A3CO2
$E_{ m 1A3,CH4}^{Y}$	CH4emissions for source category 1A3
$E_{1A3,CO2}^{Y}$	CO_2 emissions for source category 1A3 as approximated using CO_2 options $1-3$ respectively
$E^{Y-1}_{ m 1A3,CO2}$	CO2 emissions for source category 1A3 from previousyear
$E^{Y-1}_{ m 1A3,CH4}$	CH4emissions for source category 1A3 from previousyear

The estimation for N_2O emissions from source category 1.A.3 (Transport) is similar to CH_4 (Equation 19):

Equation 19

$E_{1A3,N2O}^{Y} = 0$	$(rac{E_{1A3,CO2}^{Y}}{E_{1A3,CO2}^{Y-1}}) \cdot E_{1A3,N2O}^{Y-1}$
with	
$E_{1A3,N2O}^{Y}$	N2O emissions for source category 1A3
$E_{1A3,CO2}^{Y}$	CO_2 emissions for source category 1A3 as approximated using CO_2 options $1-3$ respectively
$E_{ m 1A3,CO2}^{ m Y-1}$	CO2 emissions for source category 1A3 from previousyear
$E_{ m 1A3,N2O}^{Y-1}$	N2O emissions for source category 1A3 from previousyear

.1.4.2 Results for 2010

Table 19, Table 20 and Table 21 show the results for the proxy inventory in 2010 for 1A3 Transport compared to the inventory time series for the EU and all Member States for CO_2 , CH_4 and N_2O emissions respectively.

Gas CO2 Member Inventory data State 1990 1995 2000 2005 2006 2007 2008 2009	Proxy 2010
Member Inventory data State 1990 1995 2000 2005 2006 2007 2008 2009	Proxy 2010
State 1990 1995 2000 2005 2006 2007 2008 2009	2010
Gg	
AT 13 755 15 658 18 796 24 634 23 358 23 530 22 264 21 391	22 053
BE 20 099 22 014 24 122 25 736 25 186 25 067 27 341 26 490	29 135
BG 6 578 4 370 5 486 7 565 8 183 8 010 8 403 8 108	6 266
CY 761 1 150 1 284 2 049 2 054 2 194 2 269 2 204	2 241
CZ 7 547 9 754 12 159 17 233 17 572 18 506 18 045 17 762	16 155
DE 161 917 175 092 180 363 159 769 155 832 153 040 152 792 152 183	152 786
DK 10 617 11 940 12 173 13 166 13 544 14 161 13 929 13 109	13 063
EE 2 450 1 553 1 655 2 120 2 319 2 443 2 309 2 134	2 170
ES 54 283 64 658 82 626 99 238 102 373 105 790 100 261 93 475	91 900
FI 12 483 11 735 12 592 13 480 13 668 14 039 13 384 12 708	13 197
FR 118 076 127 993 136 183 138 741 137 792 136 445 130 152 128 808	129 407
UK 113 795 115 338 121 302 126 010 126 207 127 186 122 734 117 819	117 222
GR 14 487 16 504 19 060 21 709 22 574 23 366 22 378 25 322	21 926
HU 8 019 6 817 8 537 11 788 12 266 12 422 12 453 12 260	11 075
IE 5 039 6 107 10 513 12 792 13 483 14 144 14 058 12 977	12 165
IT 101 269 111 445 120 101 125 825 127 145 127 209 122 252 117 873	116 011
LT 7 379 3 788 3 317 4 321 4 579 5 330 5 284 4 368	4 502
LU 2 600 3 301 4 596 6 790 6 501 6 357 6 515 6 005	6 271
LV 2 895 2 011 2 109 2 986 3 294 3 730 3 523 2 726	2 722
MT 341 436 493 479 517 521 525 539	555
NL 26 009 29 178 32 410 34 674 35 565 35 212 35 494 34 073	34 072
PL 24 859 28 478 32 202 35 918 38 144 39 636 43 483 43 772	46 236
PT 9 917 13 014 18 825 19 367 19 437 19 011 18 736 18 636	18 766
RO 7 646 8 254 9 351 11 821 12 284 12 828 14 604 14 475	14 411
SE 18 778 19 091 19 434 21 143 20 952 21 037 20 518 20 160	20 452
SI 2 672 3 636 3 646 4 342 4 555 5 128 6 044 5 243	5 189
SK 4 892 4 259 4 125 6 170 5 695 6 461 6 621 6 120	7 199
EU-15 683 124 743 067 813 095 843 072 843 619 845 593 822 808 801 029	798 428
EU-25 744 938 804 948 882 623 930 478 934 613 941 963 923 363 898 158	896 470
EU-27 759 163 817 571 897 459 949 864 955 080 962 801 946 369 920 741	917 148
EU-10 61 815 61 881 69 528 87 406 90 994 96 371 100 554 97 129	98 042

Table 19CO2 emissions for source category 1A3

Gas CH4	Proxy
Manukar Inventory data	Proxy
inventory data	
State 1990 1995 2000 2005 2006 2007 2008 2009	2010
Gg	
AT 3.06 3.07 1.91 1.33 1.15 1.01 0.85 0.76	0.79
BE 5.49 5.31 3.59 2.44 2.19 1.07 0.87 0.76	0.84
BG 3.56 1.98 1.12 0.88 1.01 0.91 0.84 0.82	0.64
CY 0.27 0.31 0.33 0.40 0.43 0.44 0.46 0.48	0.49
CZ 1.38 1.75 1.77 1.65 1.56 1.57 1.45 1.45	1.32
DE 61.13 30.83 16.10 9.08 8.45 7.59 6.93 6.54	6.57
DK 2.55 2.40 1.82 1.27 1.18 1.07 0.91 0.76	0.76
EE 0.84 0.47 0.43 0.34 0.34 0.32 0.28 0.24	0.24
ES 14.87 14.74 11.78 7.86 7.05 6.48 5.53 5.10	5.01
FI 4.73 3.90 3.15 2.41 2.24 2.12 1.91 1.84	1.91
FR 40.45 32.68 23.91 15.76 13.52 12.25 11.31 10.15	10.20
UK 30.21 23.80 15.19 8.69 7.97 7.22 6.38 4.49	4.46
GR 4.52 4.56 5.00 4.81 4.72 4.51 4.22 3.95	3.42
HU 2.42 1.83 1.45 1.36 1.37 1.30 1.12 1.06	0.96
IE 1.73 1.79 1.67 1.23 1.18 1.13 1.09 1.00	0.93
IT 34.52 38.32 28.65 18.76 17.73 16.71 15.64 14.98	14.74
LT 1.05 0.62 0.51 0.60 0.64 0.74 0.72 0.61	0.62
LU 0.84 0.76 0.70 0.52 0.44 0.37 0.33 0.29	0.30
LV 0.78 0.58 0.49 0.39 0.37 0.34 0.28 0.21	0.21
MT 0.06 0.08 0.08 0.08 0.08 0.08 0.08 0.09	0.09
NL 7.51 5.09 3.56 3.02 2.95 2.87 2.86 2.73	2.73
PL 6.16 7.60 5.52 5.28 5.49 5.38 5.56 5.53	5.84
PT 3.76 3.45 3.00 2.07 1.89 1.71 1.54 1.44	1.45
RO 1.22 1.61 1.54 1.87 1.83 1.98 2.03 2.02	2.01
SE 4.99 4.07 2.65 1.78 1.62 1.48 1.35 1.29	1.31
SI 1.46 1.77 1.15 0.69 0.62 0.57 0.57 0.48	0.47
SK 1.03 1.14 0.84 0.80 0.63 0.66 0.68 0.64	0.75
EU-15 220.37 174.76 122.69 81.03 74.28 67.59 61.71 56.07	55.42
EU-25 235.82 190.90 135.27 92.62 85.82 78.99 72.90 66.84	66.40
EU-27 240.59 194.49 137.93 95.37 88.66 81.88 75.77 69.68	69.05
EU-10 15.44 16.14 12.58 11.60 11.54 11.40 11.19 10.77	10.99

Table 20CH4 emissions for source category 1A3

Source Category	1A3	3 Transport							
Gas	N2O								
Member			Invento	ory data					Proxy
State	1990	1995	2000	2005	2006	2007	2008	2009	2010
					Gg				
AT	0.63	0.88	0.99	1.07	1.00	0.95	0.85	0.78	0.81
BE	0.82	1.18	1.49	1.51	1.50	0.74	0.75	0.70	0.77
BG	0.41	0.36	0.30	0.31	0.35	0.33	0.33	0.31	0.24
CY	0.06	0.08	0.10	0.15	0.17	0.18	0.19	0.19	0.19
CZ	0.49	0.79	1.28	2.22	2.25	2.35	2.27	2.32	2.11
DE	2.19	4.84	5.01	3.93	3.73	3.54	3.29	3.18	3.20
DK	0.37	0.48	0.50	0.47	0.47	0.48	0.47	0.43	0.43
EE	0.06	0.05	0.06	0.07	0.06	0.06	0.06	0.05	0.05
ES	1.70	2.56	4.53	3.01	3.09	3.19	3.09	2.85	2.80
FI	0.56	0.57	0.59	0.59	0.59	0.58	0.56	0.56	0.58
FR	3.23	4.93	5.13	5.63	5.62	5.66	5.80	5.00	5.02
UK	4.49	6.20	5.85	5.14	5.04	4.95	4.43	4.12	4.10
GR	0.54	0.93	0.88	0.93	0.98	0.98	0.95	0.86	0.75
HU	0.33	0.42	0.76	1.30	1.25	1.23	1.31	1.27	1.15
IE	0.19	0.30	0.54	0.56	0.56	0.54	0.41	0.40	0.37
IT	2.91	4.69	5.50	3.66	3.94	3.89	3.57	3.45	3.40
LT	0.88	0.39	0.20	0.23	0.24	0.28	0.28	0.23	0.23
LU	0.09	0.17	0.21	0.26	0.24	0.23	0.24	0.22	0.23
LV	0.27	0.15	0.15	0.20	0.19	0.20	0.19	0.15	0.15
MT	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NL	0.88	1.58	1.55	1.44	1.46	1.43	1.41	1.39	1.39
PL	1.02	1.11	1.28	1.33	1.42	1.52	1.74	1.78	1.88
PT	0.25	0.60	0.73	0.64	0.63	0.63	0.63	0.63	0.64
RO	0.06	0.07	0.08	0.10	0.10	0.11	0.12	0.12	0.12
SE	0.47	0.61	0.68	0.58	0.55	0.53	0.51	0.52	0.52
SI	0.15	0.27	0.30	0.27	0.27	0.28	0.31	0.27	0.27
SK	0.39	0.33	0.21	0.25	0.23	0.24	0.23	0.24	0.28
EU-15	19.32	30.50	34.19	29.43	29.40	28.30	26.96	25.10	25.00
EU-25	22.97	34.10	38.53	35.48	35.49	34.65	33.55	31.60	31.33
EU-27	23.45	34.53	38.90	35.89	35.94	35.09	34.00	32.03	31.69
EU-10 ELL2	3.66	3.60	4.34	6.05 0.41	6.09 0.45	6.35 0.43	6.59 0.45	6.50 0.43	0.32
EU-2	0.48	0.43	0.37	0.41	0.45	0.43	0.45	0.43	0.30

Table 21 N₂O emissions for source category 1A3

.1.5 1.A.4 Other Sectors and 1.A.5 Other Fuel Combustion

No near-term data were identified which could be used to develop a real-time projection for the source categories 1A4 (Other Sectors) and 1A5 (Other Fuel Combustion) based on activity or emission data.

Therefore, the only option was to calculate approximated emissions for the total of source category 1A4 (which represents a significant share in total emissions) and 1A5 (which represents only a minor share in total emissions) by a subtraction approach. Based on the real-time projection for the source categories 1A, 1A1, 1A2 and 1A3, the emissions for the total of source categories 1A4 and 1A5 were calculated based on the following formula:

Equation 20

$E_{1A4+5}^{Y} =$	$E_{1A}^{Y} - E_{1A1}^{Y} - E_{1A2}^{Y} - E_{1A3}^{Y}$
with	
E_{1A4+5}^{Y}	Emissions for source category1A4 and 1A5
E_i^Y	Emissions for source categoryi

Thus, the approximated emissions from these source categories cannot be further disaggregated and are not based on real data for 2010. For Estonia and Malta, no separate emission estimate for category 1A Fuel Combustion (i.e. independent from subcategories 1A1, 1A2 etc.) is available (cf. chapter .1.1.1). Here, the emissions of the previous year in categories 1A4 and 1A5 were used. This approach is also used for Italy, as results for 1A fit best to Italy's own proxy calculations.

As a result, the emissions from 1A4 and 1A5 have higher uncertainties than the other source categories in the energy sector.

.1.6 1.B Fugitive Emissions from Fuels

.1.6.1 Methods and data sources used

The CO₂ and CH₄ emissions for source category 1.B (Fugitive Emissions from Fuels) were estimated on the basis of a separate analysis of the following source categories:

- Solid Fuels (1.B.1);
- Oil and Natural Gas, Oil (1.B.2.a);
- Oil and Natural Gas, Natural Gas (1.B.2.b);
- Oil and Natural Gas, Venting and Flaring (1.B.2.c).

For the CO₂ emissions for source category 1.B.1 (Solid Fuels) the inventory data from the last submission were used. To overcome the strong fluctuations between 2008 and 2009 the average value for 2007-2009 was used.

The estimates for CH₄ emissions for source category 1.B.1 (Solid Fuels) are based on the monthly production data for hard coal and lignite from Eurostat.

Equation 21

$E_{1B1,CH4}^{Y} = \frac{AR}{AR}$	$\frac{Y}{Y-l} \cdot E_{1B1,CH4}^{Y-l}$ $\frac{Y-l}{coal-prod} \cdot E_{1B1,CH4}^{Y-l}$
with	
$E_{1B1,CH4}^{Y}$	CH4 emissions for source category 1B1
$E_{1B1,CH4}^{Y-1}$	CH4 emissions for source category 1B1 from previous year
$AR_{coal-prod}^{Y}$	Hard coal or lignite production
$AR_{coal-prod}^{Y-1}$	Hard coal or lignite production for previous year

For the countries in which hard coal production is the main determinant for CH₄ emissions from source category 1.B.1 (Poland and the United Kingdom), the primary hard coal production (Eurostat indicator code 100100, Eurostat product code 2111) was used for the projection of CH₄ emissions arising from this source category. Even for Germany and the Czech Republic the primary hard coal production was used, as the 2009 data for lignite production did not correlate

with CRF emissions. For countries with a dominant lignite production (Bulgaria, Greece, Romania, Slovenia and the Slovak Republic), the primary production data for lignite (Eurostat indicator code 100100, Eurostat product code 2210) were used. For all other Member states that report CH₄ emissions from 1B1, the inventory data, average 2007-2009, from the last available submission were used.

For calculating CO_2 and CH_4 emissions from 1B2a, 1B2b, 1B2c the correlation of several trends has been reviewed.

- Eurostat crude oil production (Indicator code 100100, product code 3100);
- Eurostat gas consumption (Indicator code 100900, product code 4100);
- Eurostat gas production (Indicator code 100100, product code 4100);
- CITL main activity code 2 (refineries):

For the Member States with a significant correlation of CO₂ or CH₄ emissions with one of the trends in the previous years, the projection of emissions is based on the following formula.

Equation 22

$E^{Y}_{1B2\ a,b,c\ CO2\ or\ CH4}$	$= \frac{E_{CITL}^{Y} \text{ or } AR_{Eurostat}^{Y}}{E_{CITL}^{Y-1} AR_{Eurostat}^{Y-1}} \cdot E_{1B2a,b,c CO2 \text{ or } CH4}^{Y-1}$
with	
$E^{Y}_{1B2a,b,cCO2orCH4}$	CO2 or CH4 emissions for source category 1B2a,b,c
$E_{1B2a,b,cCO2orCH4}^{Y-1}$	CO2 or CH4 emissions for source category 1B2a,b,c
	from previous year
$AR_{Eurostat}^{Y}$	Crude oil production, Gas production or Gas consumption
$AR_{Eurostat}^{Y-1}$	Crude oil production, Gas production or Gas consumption
	for previous year

For Member States with no strong correlation between one of the trends and CO₂ or CH₄ emissions in the previous years, the emission data from the last inventory submission were used.

Table 22: Best fit trends for calculating CO₂ and CH₄ emissions from 1B2a, 1B2b and 1B2c

	1B2a CO2	1B2a CH4	1B2b CO2	1B2b CH4	1B2c venting CO2	1B2c venting CH4	1B2c flaring CO2
Crude Oil Production	BG, IT, PL, RO	AT, DK, HU, IT, RO			LT	LT	LT
CITL Refineries	CZ, DE, FI, FR	DE, ES, FI, PL, PT, SE					CZ, DE
Gas Production			DE				
Gas Consumption			BE, IT, NL, PL	DE, EE, NL, PL, RO, SI			

For all other member states that report CO_2 and CH_4 emissions from 1B2 the average of 2007-2009 CO_2 or CH_4 emissions from the last inventory submission was used. For the CH_4 emissions for source category 1.B.2c flaring the inventory data from the last submission were used.

For all N₂O emissions from source category 1.B (Fugitive Emissions from Fuels) the emissions data from the last inventory submissions were used.

.1.6.2 Results for 2010

Table 23 and Table 24 show the results for the proxy inventory in 2010 for 1B1 Fugitive Emissions from Solid Fuels compared to the inventory time series for the EU and all Member States for CO₂ and CH₄ emissions respectively.

Course Cotomory	101	1 Solid Eur								
Source Category	002	1. Solid Fue	15							
Mombor	002			Inventory da	ta				1	Broxy
State	1000	1005	2000	2004	2005	2006	2007	2008	2009	2010
State	1330	1995	2000	2004	1 2003	30	2007	2000	2003	2010
AT	IE NA NO	IE NA NO	IE NA NO	IE NA NO		IF NA NO	IE NA NO	IE NA NO	IE NA NO	IE NA NO
BE	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
BG	NA NO	NA NO	NA NO	NA NO	NA NO	NA NO	NA NO	NA NO	NA NO	NA NO
CY	NA.NO	NA.NO	NA.NO	NA.NO	NA.NO	NA.NO	NA.NO	NA.NO	NA.NO	NA.NO
CZ	NA.NE	NA.NE	NA.NE	NA.NE	NA.NE	NA.NE	NA.NE	NA.NE	NA.NE	NA.NE
DE	IE,NO	IE,NO	IE,NO	IE,NO	IE,NO	IE,NO	IE,NO	IE,NO	IE,NO	IE,NO
DK	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO
EE	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
ES	17.63	13.38	15.27	72.80	89.91	124.94	93.55	2.06	1.18	1.18
FI	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
FR	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO
UK	856.42	225.84	102.36	168.08	111.98	138.77	197.58	236.17	150.05	194.60
GR	NO	NO	IE,NO	IE,NO	IE,NO	IE,NO	IE,NO	IE,NO	IE,NO	IE,NO
HU	6.76	2.41	IE,NA,NO	IE,NA,NO	IE,NA,NO	IE,NA,NO	IE,NA,NO	IE,NA,NO	IE,NA,NO	IE,NA,NO
IE	NE,NO	NE,NO	NO	NO	NO	NO	NO	NO	NO	NO
IT	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
LT	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
LU	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
LV	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
MT	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NL	402.67	516.87	421.71	508.82	652.42	591.23	334.03	777.99	512.71	541.57
PL	1.83	1.19	1.11	1.28	1.03	1.34	1.41	1.44	1.18	1.34
PT	8.65	IE,NO	IE,NO	IE,NO	IE,NO	IE,NO	IE,NO	IE,NO	IE,NO	IE,NO
RO	NA,NE	NA,NE	NA,NE	NA,NE	NA,NE	NA,NE	NA,NE	NA,NE	NA,NE	NA,NE
SE	5.18	5.99	5.53	7.30	5.33	5.22	4.60	4.45	14.72	7.92
SI	98.38	86.20	78.99	86.25	81.28	80.99	81.83	81.77	79.85	81.15
SK	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO
EU-15	1 290.54	762.08	544.88	757.01	859.63	860.16	629.76	1 020.66	678.65	745.27
EU-25	1 397.50	851.88	624.98	844.55	941.93	942.49	713.00	1 103.87	759.68	827.77
EU-27	1 397.50	851.88	624.98	844.55	941.93	942.49	713.00	1 103.87	759.68	827.77
EU-2	0.00	0.00	0.00	07.34	02.30	02.33	0.00	0.00	01.04	0.00

Table 23CO2 emissions from 1B1 Fugitive Emissions from Solid Fuels

Source Category	1B1	1. Solid Fuel	S							
Gas	CH4									
Member			I	nventory dat	a					Proxy
State	1990	1995	2000	2004	2005	2006	2007	2008	2009	2010
						Ġg	•		•	•
AT	0.52	0.28	0.27	0.05	0.00	0.00	IE,NA,NO	IE,NA,NO	IE,NA,NO	IE,NA,NO
BE	15.70	0.83	0.63	0.57	0.56	0.57	0.50	0.30	0.19	0.33
BG	74.14	70.43	63.05	63.21	58.47	61.40	67.82	68.61	64.61	69.68
CY	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO
CZ	361.90	276.61	239.00	222.00	221.44	236.18	217.46	212.35	190.98	202.71
DE	963.81	706.35	590.51	310.58	274.05	234.59	193.56	183.75	135.53	127.71
DK	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO
EE	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
ES	86.55	69.96	59.41	47.22	44.71	44.27	42.07	32.96	29.70	34.91
FI	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
FR	193.59	198.06	114.42	28.15	15.59	10.87	2.88	2.90	2.47	2.75
UK	870.94	599.65	333.43	234.90	194.72	180.42	126.20	132.97	136.55	139.18
GR	52.16	57.95	64.21	70.39	69.74	64.84	66.80	66.05	65.22	56.58
HU	31.39	16.31	14.83	5.58	1.04	1.02	1.00	0.93	0.66	0.87
IE	NE,NO	NE,NO	NO	NO	NO	NO	NO	NO	NO	NO
IT	5.79	3.07	3.48	3.05	3.27	2.56	4.00	3.45	2.12	3.19
LT	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
LU	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
LV	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
MT	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NL	1.44	1.45	1.06	1.10	1.12	1.08	1.09	1.04	0.84	0.99
PL	628.54	601.85	525.16	472.48	459.04	442.11	410.39	387.21	350.08	339.70
PT	3.14	IE,NO	IE,NO	IE,NO	IE,NO	IE,NO	IE,NO	IE,NO	IE,NO	IE,NO
RO	174.34	187.20	127.06	122.88	118.73	123.74	127.57	129.09	115.87	116.72
SE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SI	14.42	12.96	12.01	12.89	12.17	12.12	12.12	12.11	11.87	11.87
SK	27.20	29.70	28.82	19.77	16.17	14.67	13.52	15.95	16.92	15.65
EU-15	2 193.64	1 637.61	1 167.42	696.00	603.75	539.20	437.09	423.41	372.62	365.64
EU-25	3 257.10	2 575.03	1 987.23	1 428.73	1 313.62	1 245.29	1 091.58	1 051.97	943.12	936.43
EU-27	3 505.58	2 832.66	2 177.34	1 614.81	1 490.82	1 430.43	1 286.96	1 249.67	1 123.60	1 122.83
EU-10 EU-2	1 063.46	937.43	819.81	732.72	709.86	706.09	654.48	628.56	570.50 180.49	570.80
EU-2	240.48	201.03	190.11	100.09	177.20	105.14	195.39	197.70	100.48	100.39

Table 24CH4 emissions from 1B1 Fugitive Emissions from solid Fuels

Table 25 and Table 26 show the results for the proxy inventory in 2010 for 1B1 Fugitive Emissions from Oil and Natural Gas compared to the inventory time series for the EU and all Member States for CO₂ and CH₄ emissions respectively.

Source Category	1B2	2. Oil and N	atural Gas							
Gas	CO2									
Member				Inventory da	ata					Proxy
State	1990	1995	2000	2004	2005	2006	2007	2008	2009	2010
						Ġg				
AT	102.09	127.15	164.65	210.15	205.15	232.16	237.16	212.16	265.16	238.16
BE	84.44	84.11	165.18	102.24	104.23	130.53	114.77	116.55	117.20	116.17
BG	5.47	6.86	4.12	26.15	40.35	39.09	23.03	17.41	3.09	14.51
CY	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO
CZ	4.02	11.19	12.86	23.42	24.14	20.46	19.12	18.68	17.10	18.38
DE	1 715.10	2 101.12	2 198.55	2 153.02	2 099.07	2 073.55	1 921.27	1 772.08	1 658.04	1 476.48
DK	299.88	414.81	662.36	684.08	498.63	478.27	418.10	375.96	257.69	350.58
EE	NO	NO	NO	NO	NO	NO	NO	NO	NO	0.00
ES	1 656.24	1 800.40	2 113.60	2 087.03	2 061.64	2 188.90	2 391.63	2 157.82	2 191.03	2 246.83
FI	218.85	170.68	127.93	114.53	127.11	114.10	131.52	140.25	115.48	128.55
FR	4 508.44	4 413.99	4 407.71	4 038.73	3 980.88	4 235.06	4 038.48	4 214.89	3 893.57	3 626.22
UK	5 777.84	8 429.61	5 633.01	5 112.20	5 759.08	4 894.07	5 055.59	4 273.03	4 599.43	4 642.68
GR	70.23	38.73	24.15	11.47	9.46	9.11	6.96	5.33	7.52	6.60
HU	172.52	157.08	105.49	94.93	129.43	103.30	102.21	96.56	100.10	99.62
IE	IE,NO	IE,NO	IE,NO	IE,NO	IE,NO	IE,NO	IE,NO	IE,NO	IE,NO	IE,NO
IT	3 343.55	3 177.58	2 587.83	2 154.25	2 116.94	2 193.67	2 180.77	2 264.33	2 170.10	2 331.02
LT	1.05	10.35	26.04	24.85	17.84	14.96	12.71	10.55	9.51	9.60
LU	0.03	0.03	0.04	0.07	0.07	0.07	0.07	0.07	0.07	0.07
LV	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
MT	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO
NL	774.75	441.31	267.06	998.52	1 074.12	1 068.42	1 128.28	919.66	1 065.76	1 037.95
PL	45.49	80.63	178.33	240.86	231.06	217.11	196.38	208.24	187.69	203.50
PT	155.56	566.03	520.85	695.12	631.41	653.92	726.12	760.83	645.68	711.15
RO	47.64	40.72	36.10	33.02	31.52	29.19	27.69	27.43	25.61	25.86
SE	303.75	298.58	350.14	308.14	311.11	853.42	892.29	887.92	897.55	892.59
SI	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	NO
SK	0.15	0.15	0.18	0.18	0.17	0.17	0.15	0.15	0.24	0.00
EU-15	19 010.75	22 064.13	19 223.06	18 669.56	18 978.90	19 125.23	19 243.01	18 100.86	17 884.28	17 805.05
EU-25	19 233.98	22 323.54	19 545.97	19 053.81	19 381.53	19 481.25	19 573.58	18 435.05	18 198.92	18 136.14
EU-27	19 287.09	22 371.12	19 586.19	19 112.98	19 453.40	19 549.52	19 624.30	18 479.90	18 227.62	18 176.51
EU-10	223.23	259.41	322.91	384.25	402.63	356.02	330.57	334.18	314.64	331.10
EU-2	53.10	47.58	40.22	59.17	/1.8/	68.28	50.72	44.85	28.69	40.37

Table 25CO2 emissions from 1B2 Fugitive Emissions from Oil and Natural Gas

Gas CH4 Member State 1990 1995 2000 2006 2007 2008 2009 2009 2010 AT 9.41 10.47 9.88 10.92 11.22 11.69 12.09 12.23 13.03 12.50 BE 25.01 24.72 21.35 18.77 19.54 19.39 19.29 18.27 18.47 18.70 BG 35.65 29.53 24.45 23.43 28.01 28.08 27.84 26.34 16.66 23.66 CY 0.02 0.03 0.04 0.01 NA,NE,NO	Source Category	1B2	2. Oil and N	latural Gas							
Image: Network of the system of the	Gas	CH4									
State 1990 1995 2000 2004 2005 2006 2007 2008 2009 2010 AT 9.41 10.47 9.88 10.92 11.22 11.69 12.09 12.23 13.03 12.50 BE 25.01 24.72 21.35 18.77 19.54 19.39 19.29 18.27 18.47 18.70 18.70 BG 35.65 29.53 24.45 23.43 28.01 28.08 27.84 26.34 16.86 23.66 31.82 32.26 31.89 33.19 33.14 30.32 32.26 31.88 20.22 42.74 31.87 33.11 27.09 32.38 33.09 33.14 30.32 32.26 31.88 26.25 5.55 5.53 25.55 5.53 25.55 5.53 25.71 26.48 24.67 23.62 15.97 16.27 EE 37.67 17.80 20.27 23.77 24.49 24.03 24.49 23.43 <	Member				Inventory da	ata					Proxy
AT 9.41 10.47 9.88 10.92 11.22 11.69 12.09 12.23 13.03 12.50 BE 25.01 24.72 21.35 18.77 19.54 11.39 19.29 18.27 18.47 18.70 BG 35.65 29.53 24.45 23.43 28.01 28.08 27.84 26.34 16.86 23.66 CY 0.02 0.03 0.04 0.01 NA.NE.NO	State	1990	1995	2000	2004	2005	2006	2007	2008	2009	2010
AT 9.41 10.47 9.88 10.92 11.22 11.69 12.09 12.23 13.03 12.50 BE 25.01 24.72 21.35 18.77 19.54 13.93 19.29 18.27 18.47 18.77 BG 35.65 22.53 24.45 52.33 28.01 28.08 27.84 26.34 16.86 23.66 CY 0.02 0.03 0.04 0.01 NA,NE,NO				÷	÷		Ġg	÷			
BE 25.01 24.72 21.35 18.77 19.54 19.39 19.29 18.27 18.47 18.70 BG 35.65 29.53 24.45 23.43 28.01 28.08 27.84 26.34 16.86 23.66 CY 0.02 0.03 0.04 0.01 NA.NE.NO NA.NE.NO <td< td=""><td>AT</td><td>9.41</td><td>10.47</td><td>9.88</td><td>10.92</td><td>11.22</td><td>11.69</td><td>12.09</td><td>12.23</td><td>13.03</td><td>12.50</td></td<>	AT	9.41	10.47	9.88	10.92	11.22	11.69	12.09	12.23	13.03	12.50
BG 35.65 29.53 24.45 23.43 28.01 28.08 27.84 26.34 16.86 23.66 CY 0.02 0.03 0.04 0.01 NA,NE,NO	BE	25.01	24.72	21.35	18.77	19.54	19.39	19.29	18.27	18.47	18.70
CY 0.02 0.03 0.04 0.01 NA,NE,NO	BG	35.65	29.53	24.45	23.43	28.01	28.08	27.84	26.34	16.86	23.66
CZ 42.74 31.87 33.11 27.09 32.38 33.09 33.14 30.32 32.26 31.89 DE 362.85 377.22 370.21 364.98 365.96 362.66 355.53 349.67 368.62 DK 2.07 3.33 3.97 5.11 6.11 6.41 6.08 6.05 5.55 5.33 EE 37.67 17.80 20.27 23.77 24.49 24.80 24.67 23.62 15.97 16.27 ES 29.24 37.37 34.96 36.77 40.70 26.87 24.03 24.36 25.24 24.35 FR 73.96 63.51 60.43 58.58 55.71 55.48 56.11 56.2 49.63 53.96 UK 491.57 463.09 379.35 287.44 275.81 259.73 270.57 250.83 250.77 257.20 GR 4.36 2.64 6.54 6.99 6.90 7.42 7.62 7.93 8.19 7.90 HU 73.21 93.47 97	CY	0.02	0.03	0.04	0.01	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO
DE 362.85 377.22 370.21 364.98 365.96 362.56 354.60 352.53 349.67 368.62 DK 2.07 3.33 3.97 5.11 5.11 6.41 6.08 6.05 5.55 5.33 EE 37.67 17.80 20.27 23.77 24.49 24.80 24.67 23.62 15.97 16.27 ES 29.24 37.37 34.96 367.7 24.49 2.43 24.33 2.19 2.30 FR 0.53 3.80 2.62 2.62 3.05 2.64 2.44 2.33 2.19 2.30 GR 43.65 2.64 6.043 58.58 55.71 55.48 56.11 56.52 4.96.3 53.96 HU 73.21 93.47 97.50 97.51 97.49 98.04 98.35 96.54 98.71 97.60 HU 73.47 324.64 302.41 270.00 26.62 242.94 23.47.3	CZ	42.74	31.87	33.11	27.09	32.38	33.09	33.14	30.32	32.26	31.89
DK 2.07 3.33 3.97 5.11 5.11 6.41 6.08 6.05 5.55 5.33 EE 37.67 17.80 20.27 23.77 24.49 24.60 24.67 23.62 15.97 16.27 ES 29.24 37.37 34.96 36.77 40.70 26.87 24.03 24.36 25.24 24.35 FR 73.96 63.51 60.43 58.58 55.71 55.48 56.11 56.52 49.63 53.96 UK 491.57 463.09 379.35 287.44 275.81 259.73 270.57 250.83 250.77 257.20 GR 4.36 2.64 6.54 6.99 6.90 7.42 7.62 7.93 8.19 7.00 HU 73.21 93.47 97.50 97.51 97.49 98.04 98.35 96.54 98.71 97.61 LU 0.77 1.00 1.120 2.15 2.11 2.22 <	DE	362.85	377.22	370.21	364.98	365.96	362.56	354.60	352.53	349.67	368.62
EE 37.67 17.80 20.27 23.77 24.49 24.80 24.67 23.62 15.97 16.27 ES 29.24 37.37 34.96 36.77 40.70 26.87 24.03 24.36 25.24 24.35 FI 0.53 3.80 2.62 2.62 3.05 2.64 2.44 2.33 2.19 2.30 GR 491.57 463.09 379.35 287.44 275.81 259.73 270.57 250.83 260.77 257.20 GR 4.36 2.64 6.54 6.99 6.90 7.42 7.62 7.93 8.19 7.90 HU 73.21 93.47 97.50 97.51 97.49 98.04 98.35 96.54 98.71 97.61 IF 6.25 5.45 4.07 3.15 2.71 2.25 2.85 2.46 1.089 2.33 IT 347.54 324.64 10.67 11.16 11.69 11.77 <td< td=""><td>DK</td><td>2.07</td><td>3.33</td><td>3.97</td><td>5.11</td><td>5.11</td><td>6.41</td><td>6.08</td><td>6.05</td><td>5.55</td><td>5.33</td></td<>	DK	2.07	3.33	3.97	5.11	5.11	6.41	6.08	6.05	5.55	5.33
ES29.2437.3734.9636.7740.7026.8724.0324.3625.2424.35FI0.533.802.622.623.052.642.442.332.192.30FR73.9663.5160.4358.5855.7155.4856.1156.5249.6353.96UK491.57463.09379.35287.44275.81259.73270.57250.83250.77257.20GR4.362.646.546.996.907.427.627.938.197.90HU73.2193.4797.5097.5197.4998.0498.3596.5498.7197.61IE6.255.454.073.152.712.252.852.461.692.33IT347.54324.64302.41270.00268.62242.94234.73238.13233.60234.80LU0.771.001.202.152.112.222.071.982.002.02LV13.0510.437.946.216.945.045.165.305.025.08MTNA,NE,NONA,NE,NONA,NE,NONA,NE,NONA,NE,NONA,NE,NONA,NE,NONA,NE,NONA,NE,NONL78.2477.8938.5834.2036.1633.4936.4137.9736.3939.42PL147.39151.76168.38200.52205.65207.51207.62209.59 <td>EE</td> <td>37.67</td> <td>17.80</td> <td>20.27</td> <td>23.77</td> <td>24.49</td> <td>24.80</td> <td>24.67</td> <td>23.62</td> <td>15.97</td> <td>16.27</td>	EE	37.67	17.80	20.27	23.77	24.49	24.80	24.67	23.62	15.97	16.27
FI 0.53 3.80 2.62 2.62 3.05 2.64 2.44 2.33 2.19 2.30 FR 73.96 63.51 60.43 58.58 55.71 55.48 56.11 56.52 49.63 53.66 UK 491.57 463.09 379.35 287.44 275.81 259.73 270.57 250.83 250.77 257.20 GR 4.36 2.64 6.54 6.99 6.90 7.42 7.62 7.93 8.19 7.90 HU 73.21 93.47 97.50 97.51 97.49 98.04 98.35 96.54 98.71 97.61 IE 6.25 5.45 4.07 3.15 2.71 2.25 2.85 2.46 1.69 2.33 IT 7.11 8.64 10.67 11.16 11.69 11.77 11.72 12.01 12.40 11.92 LV 13.05 10.43 7.94 6.21 6.94 5.04 5.16 <td>ES</td> <td>29.24</td> <td>37.37</td> <td>34.96</td> <td>36.77</td> <td>40.70</td> <td>26.87</td> <td>24.03</td> <td>24.36</td> <td>25.24</td> <td>24.35</td>	ES	29.24	37.37	34.96	36.77	40.70	26.87	24.03	24.36	25.24	24.35
FR 73.96 63.51 60.43 58.58 55.71 55.48 56.11 56.52 49.63 53.96 UK 491.57 463.09 379.35 287.44 275.81 259.73 270.57 250.83 250.77 257.20 GR 4.36 2.64 6.54 6.99 6.90 7.42 7.62 7.93 8.19 7.90 HU 73.21 93.47 97.50 97.51 97.49 98.04 98.35 96.54 98.71 97.61 IE 6.25 5.45 4.07 3.15 2.71 2.25 2.85 2.46 1.69 2.33 IT 7.11 8.64 10.67 11.16 11.69 11.77 11.72 12.01 12.40 11.92 LU 0.77 1.00 1.20 2.15 2.11 2.22 2.07 1.98 2.00 2.02 LV 13.05 10.43 7.94 6.21 6.94 5.04 5.16 <td>FI</td> <td>0.53</td> <td>3.80</td> <td>2.62</td> <td>2.62</td> <td>3.05</td> <td>2.64</td> <td>2.44</td> <td>2.33</td> <td>2.19</td> <td>2.30</td>	FI	0.53	3.80	2.62	2.62	3.05	2.64	2.44	2.33	2.19	2.30
UK 491.57 463.09 379.35 287.44 275.81 259.73 270.57 250.83 250.77 257.20 GR 4.36 2.64 6.54 6.99 6.90 7.42 7.62 7.93 8.19 7.90 HU 73.21 93.47 97.50 97.51 97.49 98.04 98.35 96.54 98.71 97.61 IE 6.25 5.45 4.07 3.15 2.71 2.25 2.85 2.46 1.69 2.33 IT 347.54 324.64 302.41 270.00 268.62 242.94 234.73 238.13 233.60 234.80 LT 7.11 8.64 10.67 11.16 11.69 11.77 11.72 12.01 12.40 1.92 LU 0.77 1.00 1.20 2.15 2.11 2.22 2.07 1.98 2.00 2.02 LV 13.05 10.43 7.94 6.21 6.94 5.04 <td< td=""><td>FR</td><td>73.96</td><td>63.51</td><td>60.43</td><td>58.58</td><td>55.71</td><td>55.48</td><td>56.11</td><td>56.52</td><td>49.63</td><td>53.96</td></td<>	FR	73.96	63.51	60.43	58.58	55.71	55.48	56.11	56.52	49.63	53.96
GR 4.36 2.64 6.54 6.99 6.90 7.42 7.62 7.93 8.19 7.90 HU 73.21 93.47 97.50 97.51 97.49 98.04 98.35 96.54 98.71 97.61 IE 6.25 5.45 4.07 3.15 2.71 2.25 2.85 2.46 1.69 2.33 IT 347.54 324.64 302.41 270.00 268.62 242.94 234.73 238.13 233.60 234.80 LT 7.11 8.64 10.67 11.16 11.69 11.77 11.72 12.01 12.40 11.92 LU 0.77 1.00 1.20 2.15 2.11 2.22 2.07 1.88 2.00 2.02 2.08 MT NA,NE,NO NA,NE,NO <td< td=""><td>UK</td><td>491.57</td><td>463.09</td><td>379.35</td><td>287.44</td><td>275.81</td><td>259.73</td><td>270.57</td><td>250.83</td><td>250.77</td><td>257.20</td></td<>	UK	491.57	463.09	379.35	287.44	275.81	259.73	270.57	250.83	250.77	257.20
HU73.2193.4797.5097.5197.4998.0498.3596.5498.7197.61IE6.255.454.073.152.712.252.852.461.692.33IT347.54324.64302.41270.00268.62242.94234.73238.13233.60234.80LT7.118.6410.6711.1611.6911.7711.7212.0112.4011.92LU0.771.001.202.152.112.222.071.982.002.02LV13.0510.437.946.216.945.045.165.305.025.08MTNA,NE,NONA,NE,NONA,NE,NONA,NE,NONA,NE,NONA,NE,NONA,NE,NONA,NE,NONA,NE,NONA,NE,NONL78.2477.8938.5832.0236.1633.4936.4137.9736.3939.42PL147.39151.76168.38200.52205.65207.51207.62209.59205.21213.94PT2.462.989.862.0668.388.389.9222.3331.3321.09RO1019.35695.14513.97511.50486.46477.72445.05434.30385.81407.84SE0.770.860.910.910.860.880.810.930.860.87SK2.452.91.334.0634.3231.9632.13	GR	4.36	2.64	6.54	6.99	6.90	7.42	7.62	7.93	8.19	7.90
IE 6.25 5.45 4.07 3.15 2.71 2.25 2.85 2.46 1.69 2.33 IT 347.54 324.64 302.41 270.00 268.62 242.94 234.73 238.13 233.60 234.80 LT 7.11 8.64 10.67 11.16 11.69 11.77 11.72 12.01 12.40 11.92 LU 0.77 1.00 1.20 2.15 2.11 2.22 2.07 1.98 2.00 2.02 LV 13.05 10.43 7.94 6.21 6.94 5.04 5.16 5.30 5.02 5.08 MT NA,NE,NO NA	HU	73.21	93.47	97.50	97.51	97.49	98.04	98.35	96.54	98.71	97.61
IT 347.54 324.64 302.41 270.00 268.62 242.94 234.73 238.13 233.60 234.80 LT 7.11 8.64 10.67 11.16 11.69 11.77 11.72 12.01 12.40 11.92 LU 0.77 1.00 1.20 2.15 2.11 2.22 2.07 1.98 2.00 2.02 LV 13.05 10.43 7.94 6.21 6.94 5.04 5.16 5.30 5.02 5.08 MT NA,NE,NO NA,NE,NO <td>IE</td> <td>6.25</td> <td>5.45</td> <td>4.07</td> <td>3.15</td> <td>2.71</td> <td>2.25</td> <td>2.85</td> <td>2.46</td> <td>1.69</td> <td>2.33</td>	IE	6.25	5.45	4.07	3.15	2.71	2.25	2.85	2.46	1.69	2.33
LT 7.11 8.64 10.67 11.16 11.69 11.77 11.72 12.01 12.40 11.92 LU 0.77 1.00 1.20 2.15 2.11 2.22 2.07 1.98 2.00 2.02 LV 13.05 10.43 7.94 6.21 6.94 5.04 5.16 5.30 5.02 5.08 MT NA,NE,NO NA,NE NO NA,NE NO Si Si Si	IT	347.54	324.64	302.41	270.00	268.62	242.94	234.73	238.13	233.60	234.80
LU 0.77 1.00 1.20 2.15 2.11 2.22 2.07 1.98 2.00 2.02 LV 13.05 10.43 7.94 6.21 6.94 5.04 5.16 5.30 5.02 5.08 MT NA.NE,NO NA,NE,NO NA,NE NO S0.05.2 <td>LT</td> <td>7.11</td> <td>8.64</td> <td>10.67</td> <td>11.16</td> <td>11.69</td> <td>11.77</td> <td>11.72</td> <td>12.01</td> <td>12.40</td> <td>11.92</td>	LT	7.11	8.64	10.67	11.16	11.69	11.77	11.72	12.01	12.40	11.92
LV 13.05 10.43 7.94 6.21 6.94 5.04 5.16 5.30 5.02 5.08 MT NA,NE,NO	LU	0.77	1.00	1.20	2.15	2.11	2.22	2.07	1.98	2.00	2.02
MT NA,NE,NO N	LV	13.05	10.43	7.94	6.21	6.94	5.04	5.16	5.30	5.02	5.08
NL 78.24 77.89 38.58 34.20 36.16 33.49 36.41 37.97 36.39 39.42 PL 147.39 151.76 168.38 200.52 205.65 207.51 207.62 209.59 205.21 213.94 PT 2.46 2.98 9.86 20.66 8.38 8.38 9.92 22.33 31.33 21.09 RO 1019.35 695.14 513.97 511.50 486.46 477.72 445.05 434.30 388.81 407.84 SE 0.77 0.86 0.91 0.91 0.86 0.88 0.81 0.93 0.86 0.87 SI 2.76 2.60 2.06 1.60 1.57 1.52 1.49 1.47 1.40 1.45 SK 24.45 29.13 34.06 34.32 31.96 32.13 35.45 34.91 37.77 35.59 EU-15 1435.03 1398.95 1246.33 1123.26 1102.84 <	MT	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE,NO	NA,NE
PL 147.39 151.76 168.38 200.52 205.65 207.51 207.62 209.59 205.21 213.94 PT 2.46 2.98 9.86 20.66 8.38 8.38 9.92 22.33 31.33 21.09 RO 1019.35 695.14 513.97 511.50 486.46 477.72 445.05 434.30 385.81 407.84 SE 0.77 0.86 0.91 0.91 0.86 0.88 0.81 0.93 0.86 0.87 SI 2.76 2.60 2.06 1.60 1.57 1.52 1.49 1.47 1.40 1.45 SK 24.45 29.13 34.06 34.32 31.96 32.13 35.45 34.91 37.77 35.59 EU-15 1.435.03 1.398.95 1.246.33 1.123.26 1.042.34 1.039.64 1.034.85 1.028.61 1.051.38 EU-25 1.783.44 1.744.68 1.620.37 1.525.45 1.515.02 <td>NL</td> <td>78.24</td> <td>77.89</td> <td>38.58</td> <td>34.20</td> <td>36.16</td> <td>33.49</td> <td>36.41</td> <td>37.97</td> <td>36.39</td> <td>39.42</td>	NL	78.24	77.89	38.58	34.20	36.16	33.49	36.41	37.97	36.39	39.42
PT 2.46 2.98 9.86 20.66 8.38 8.38 9.92 22.33 31.33 21.09 RO 1019.35 695.14 513.97 511.50 486.46 477.72 445.05 434.30 385.81 407.84 SE 0.77 0.86 0.91 0.91 0.86 0.88 0.81 0.93 0.86 0.87 SI 2.76 2.60 2.06 1.60 1.57 1.52 1.49 1.47 1.40 1.45 SK 24.45 29.13 34.06 34.32 31.96 32.13 35.45 34.91 37.77 35.59 EU-15 1.435.03 1.398.95 1.246.33 1.123.26 1.102.84 1.042.34 1.034.85 1.028.61 1.051.38 EU-25 1.783.44 1.744.68 1.620.37 1.525.45 1.515.02 1.456.23 1.457.25 1.448.60 1.437.34 1.466.12 EU-27 2.838.43 2.469.35 2.158.78 2.060.38	PL	147.39	151.76	168.38	200.52	205.65	207.51	207.62	209.59	205.21	213.94
RO 1 019.35 695.14 513.97 511.50 486.46 477.72 445.05 434.30 385.81 407.84 SE 0.77 0.86 0.91 0.91 0.86 0.88 0.81 0.93 0.86 0.87 SI 2.76 2.60 2.06 1.60 1.57 1.52 1.49 1.47 1.40 1.45 SK 24.45 29.13 34.06 34.32 31.96 32.13 35.45 34.91 37.77 35.59 EU-15 1 435.03 1 398.95 1 246.33 1 123.26 1 102.84 1 042.34 1 039.64 1 034.85 1 028.61 1 051.38 EU-25 1 783.44 1 744.68 1 620.37 1 525.45 1 515.02 1 457.25 1 448.60 1 437.34 1 466.12 EU-27 2 838.43 2 469.35 2 158.78 2 060.38 2 029.49 1 962.04 1 930.14 1 909.23 1 840.01 1 896.62 EU-10 348.41 345.72 374.	PT	2.46	2.98	9.86	20.66	8.38	8.38	9.92	22.33	31.33	21.09
SE 0.77 0.86 0.91 0.91 0.86 0.88 0.81 0.93 0.86 0.87 SI 2.76 2.60 2.06 1.60 1.57 1.52 1.49 1.47 1.40 1.45 SK 24.45 29.13 34.06 34.32 31.96 32.13 35.45 34.91 37.77 35.59 EU-15 1.435.03 1.398.95 1.246.33 1.123.26 1.02.84 1.042.34 1.039.64 1.034.85 1.028.61 1.051.38 EU-25 1.783.44 1.744.68 1.620.37 1.525.45 1.515.02 1.456.23 1.457.25 1.448.60 1.437.34 1.465.12 EU-27 2.838.43 2.469.35 2.158.78 2.060.38 2.029.49 1.962.04 1.90.14 1.909.23 1.840.01 1.896.62 EU-10 348.41 345.72 374.04 402.19 412.18 413.89 417.60 413.75 408.73 413.75 EU-10 348.41 345	RO	1 019.35	695.14	513.97	511.50	486.46	477.72	445.05	434.30	385.81	407.84
SI 2.76 2.60 2.06 1.60 1.57 1.52 1.49 1.47 1.40 1.45 SK 24.45 29.13 34.06 34.32 31.96 32.13 35.45 34.91 37.77 35.59 EU-15 1.435.03 1398.95 1.246.33 1123.26 1102.84 1.042.34 1.039.64 1.034.85 1.028.61 1.051.38 EU-25 1.783.44 1.744.68 1.620.37 1.525.45 1.515.02 1.456.23 1.457.25 1.448.60 1.437.34 1.465.12 EU-27 2.838.43 2.469.35 2.158.78 2.060.38 2.029.49 1.962.04 1.930.14 1.909.23 1.840.01 1.896.52 EU-10 348.41 345.72 374.04 402.19 412.18 413.89 417.60 413.75 408.73 413.75 EU-10 348.41 345.72 374.04 402.19 412.18 413.89 417.60 413.75 408.73 413.75	SE	0.77	0.86	0.91	0.91	0.86	0.88	0.81	0.93	0.86	0.87
SK 24.45 29.13 34.06 34.32 31.96 32.13 35.45 34.91 37.77 35.59 EU-15 1 435.03 1 398.95 1 246.33 1 123.26 1 102.84 1 042.34 1 039.64 1 034.85 1 028.61 1 051.38 EU-25 1 783.44 1 744.68 1 620.37 1 525.45 1 515.02 1 456.23 1 457.25 1 448.60 1 437.34 1 465.12 EU-27 2 838.43 2 469.35 2 158.78 2 060.38 2 029.49 1 962.04 1 930.14 1 909.23 1 840.01 1 896.62 EU-10 348.41 345.72 374.04 402.19 412.18 413.89 417.60 413.75 408.73 413.75 EU-10 348.41 345.72 374.04 402.19 412.18 413.89 417.60 413.75 408.73 413.75	SI	2.76	2.60	2.06	1.60	1.57	1.52	1.49	1.47	1.40	1.45
EU-15 1 435.03 1 398.95 1 246.33 1 123.26 1 102.84 1 042.34 1 039.64 1 034.85 1 028.61 1 051.38 EU-25 1 783.44 1 744.68 1 620.37 1 525.45 1 515.02 1 456.23 1 457.25 1 448.60 1 437.34 1 465.12 EU-27 2 838.43 2 469.35 2 158.78 2 060.38 2 029.49 1 962.04 1 930.14 1 909.23 1 840.01 1 896.62 EU-10 348.41 345.72 374.04 402.19 412.18 413.89 417.60 413.75 408.73 413.75	SK	24.45	29.13	34.06	34.32	31.96	32.13	35.45	34.91	37.77	35.59
EU-25 1 783.44 1 744.68 1 620.37 1 525.45 1 515.02 1 457.25 1 448.60 1 437.34 1 465.12 EU-27 2 838.43 2 469.35 2 158.78 2 060.38 2 029.49 1 962.04 1 930.14 1 909.23 1 840.01 1 896.62 EU-10 348.41 345.72 374.04 402.19 412.18 413.89 417.60 413.75 408.73 413.75	EU-15	1 435.03	1 398.95	1 246.33	1 123.26	1 102.84	1 042.34	1 039.64	1 034.85	1 028.61	1 051.38
EU-27 2 838.43 2 469.35 2 158.78 2 060.38 2 029.49 1 962.04 1 930.14 1 909.23 1 840.01 1 896.62 EU-10 348.41 345.72 374.04 402.19 412.18 413.89 417.60 413.75 408.73 413.75 EU-10 348.41 345.72 374.04 402.19 412.18 413.89 417.60 413.75 408.73 413.75	EU-25	1 783.44	1 744.68	1 620.37	1 525.45	1 515.02	1 456.23	1 457.25	1 448.60	1 437.34	1 465.12
EU-10 348.41 345.72 374.04 402.19 412.18 413.89 417.60 413.75 408.73 413.75	EU-27	2 838.43	2 469.35	2 158.78	2 060.38	2 029.49	1 962.04	1 930.14	1 909.23	1 840.01	1 896.62
ELEZ I TUSZUM ZZARZ S3872 S3797 S1777 S0581 77200 76067 70267 72450	EU-10 ELL-2	348.41	345.72	374.04	402.19	412.18	413.89	417.60	413.75	408.73	413.75

Table 26 CH4 emissions from 1B2 Fugitive Emissions from Oil and Natural Gas

.2 Industrial processes

.2.1 2.A Mineral Products

.2.1.1 Methods and data sources used

The emissions from 2.A Mineral products are based on CO₂ emission data for Cement (2.A.1), Lime (2.A.2) and Glass Production (2.A.7) from the CITL data which were used as an index of the evolution of the emissions from the production of cement clinker, lime or glass production. In this approach CO₂ emissions from mineral products were calculated as follows:

$E_{2A}^{Y} =$	$\frac{E_{CITL}^{Y}}{E_{CITL}^{Y-1}} \cdot E_{2A}^{Y-1}$
with	
E_{2A}^{Y}	Emissions for source category 2A
E_{2A}^{Y-1}	Emissions for source category 2A from previous year
E_{CITL}^{Y}	CITL emissions for the productionof cement clinker lime or
	glass production
E_{CITL}^{Y-1}	CITL emissions for the productionof cement clinker, lime or
	glass production from previous year

For Malta and Cyprus 2010 verified emissions were not available, therefore emissions have been kept constant.

.2.1.2 Results for 2010

GHG emissions from Industrial Processes increased by 17.6 Mt CO₂eq for the EU-15 and by 24.1 Mt CO₂eq for the EU-27 in 2010 compared to 2009. Table 27 indicates the sub-sector contribution to this trend in emissions.

Table 27 Change in GHG emissions between 2009 and 2010 for Industrial Processes emissions

	Change 2009/10						
Sector Industrial Processes	EU	-15	EU-27				
	Mt CO ₂ eq	%	Mt CO ₂ eq	%			
2 Industrial Processes	17.6	7.0%	24.1	7.5%			
2.A Mineral Products	1.0	1.1%	0.3	0.3%			
2.B Chemical Industry	-0.6	-1.1%	-0.3	-0.4%			
2.C Metal Production	14.7	44.8%	20.7	38.5%			

Source: EEA's ETC ACM based on the 2011 EU greenhouse gas inventory to UNFCCC for 1990-2009 and early estimates for 2010

Figure 12 Change in GHG emissions between 2009 and 2010 for Industrial Processes emissions

Source: EEA's ETC ACM based on the 2011 EU greenhouse gas inventory to UNFCCC for 1990-2009 and early estimates for 2010

Source Category	2A	Mineral Proc	ducts							
Gas	CO2									
Member			In	ventory data						Proxy
State	1990	1995	2000	2004	2005	2006	2007	2008	2009	2010
	Gg									
AT	3 274	2 863	2 966	3 178	3 133	3 307	3 518	3 531	2 918	2871
BE	5 330	5 696	5 804	5 523	5 431	5 735	5 606	5 574	4 584	4743
BG	3 907	3 240	2 120	2 595	2 809	2 940	3 460	3 474	2 216	1749
CY	667	599	805	882	890	905	896	893	720	720
CZ	4 830	3 602	4 166	3 909	3 856	3 975	4 364	4 130	3 449	3404
DE	22 928	23 356	22 457	20 866	19 701	20 127	21 431	20 494	18 075	18648
DK	1 069	1 405	1 616	1 644	1 544	1 607	1 606	1 320	881	844
EE	628	367	401	408	415	463	648	647	282	307
ES	15 404	15 857	19 091	21 249	21 875	22 042	21 865	18 788	14 675	14488
FI	1 254	913	1 106	1 256	1 198	1 284	1 294	1 256	876	1048
FR	16 394	13 806	13 721	14 253	14 058	14 284	14 359	13 553	11 512	11865
UK	10 151	9 231	9 285	8 622	8 513	8 569	8 800	7 783	5 800	5947
GR	6 676	7 073	7 380	7 245	7 738	7 474	7 336	6 958	5 315	4878
HU	3 278	2 317	2 263	2 283	2 262	2 356	2 391	2 270	1 615	1370
IE	1 117	1 084	1 909	2 507	2 553	2 539	2 580	2 302	1 485	1290
IT	21 265	20 933	21 393	23 710	23 358	23 412	23 934	21 647	17 498	17616
LT	2 141	424	359	430	448	600	599	521	307	321
LU	623	519	580	513	505	501	496	466	440	451
LV	586	155	165	353	238	266	282	280	242	436
MT	0	1	0	0	0	0	0	0	0	0
NL	923	1 432	1 165	1 154	1 135	1 140	1 152	1 128	1 042	1001
PL	8 460	9 031	8 310	7 136	7 786	8 930	10 169	9 851	8 443	8931
PT	3 475	3 934	4 444	4 655	4 714	4 614	4 837	4 721	3 839	4027
RO	8 902	6 442	5 308	6 219	6 165	6 669	7 846	7 577	5 093	4615
SE	1 722	1 763	1 879	1 918	2 029	2 179	2 107	2 160	1 836	2024
SI	699	572	635	658	714	768	806	840	608	547
SK	2 690	2 120	2 244	2 507	2 651	2 715	2 822	2 991	2 286	2225
EU-15	111 605	109 865	114 795	118 292	117 486	118 812	120 921	111 682	90 777	91 742
EU-25	135 584	129 053	134 144	136 858	136 745	139 790	143 898	134 104	108 728	110 003
EU-27	148 393	138 735	141 572	145 671	145 719	149 399	155 205	145 155	116 036	116 367
EU-10	23 980	19 188	19 348	18 566	19 260	20 978	22 978	22 422	17 951	18 261
EU-2	12 809	9 682	7 428	8 813	8 974	9 609	11 306	11 051	7 308	6 364

Table 28 CO₂ emissions from 2A Mineral Products

.2.2 2C Metal Production

.2.2.1 Methods and data sources used

The estimates for CO₂ emissions for source category 2.C (Metal Production) are based on separate estimates for source category 2.C.1 (Iron and Steel Production) and the remaining subcategories of source category 2.C.

For calculating CO₂ emissions from 2.C.1 the correlation of several trends has been analysed. The estimates are based on monthly production data from the International Iron and Steel Institute (IISI) or on CITL data. The following trends have been used:

- 1. Crude steel production data from the International Iron and Steel Institute (IISI);
- 2. Blast furnace iron production data from the International Iron and Steel Institute (IISI);
- 3. CITL main activity code 3 (Coke ovens) and 5 (Installations for the production of pig iron or steel (primary or secondary fusion) including continuous casting) and including those power plants in the CITL that where identified to use waste gases from the iron and steel industry;
- 4. CITL main activity code 3 (Coke ovens), 4 and 5 (Installations for the production of pig iron or steel (primary or secondary fusion) including continuous casting) and including

those power plants in the CITL that where identified to use waste gases from the iron and steel industry;

The estimates for CO₂ emissions for source category 2.C.1 (Iron and Steel Production) are based on the formula:

Equation 24

$$\begin{split} E_{2C1,CO2}^{Y} &= \frac{AR_{steel}^{Y}}{AR_{steel}^{Y-1}} \cdot E_{2C1,CO2}^{Y-1} \\ with \\ E_{2C1,CO2}^{Y} & CO2 \ emissions \ for \ source \ category \ 2C1 \\ E_{2C1,CO2}^{Y-1} & CO2 \ emissions \ for \ source \ category \ 2C1 \ from \ previous \ yean \\ AR_{steel}^{Y} & Crude \ steel \ production \\ AR_{steel}^{Y-1} & Crude \ steel \ production \ for \ previous \ yean \end{split}$$

This equation and the IISI monthly crude steel production data was used for Austria, Hungary, Sweden and Slovenia. For Belgium, the Czech Republic, Poland and the Slovak Republic the IISI monthly blast furnace iron production data was used. For Spain, Finland, Greece and the Netherlands emission trends from CITL data were used for the calculation.

For Member States with no strong correlation between one of the trends and CO₂ emissions in the previous years, the emission data average 2007-2009 from the last inventory submission were used. This includes Bulgaria, Germany, France, Lithuania, Luxembourg, Latvia, Portugal and Romania.

For the UK a specific approach was developed in 2011 which is different to the other Member States. The UK inventory reports a large share of process emissions from Iron and Steel Production in the Energy sector and the main emissions reported under 2.C.1 are fugitive emissions from blast furnace gas losses which are not used for energy purposes. These emissions do not correlate at all with iron and steel production trends. Therefore the reported energy emissions in category 1.A.2.a Iron and Steel in the UK inventory were split into energy and process emissions based on the energy consumption for iron and steel indicated in the UK energy balance (which is much lower than the energy consumption indicated in the inventory). The process related emissions were added to the emissions reported under 2.C.1. This new aggregate for 2.C.1 correlates well with the iron and steel production trend for 2000 to 2009. To avoid double counting of emissions for UK, the reallocated emissions were subtracted from 1A Fuel Combustion emissions.

The total CO₂ emissions for source category 2.C (Metal Production) were calculated from the estimates for source category 2.C.1 (Iron and Steel Production) and the CO₂ emission data from all other sub-categories of source category 2.C from the last inventory submissions.

.2.2.2 Results for 2010

Table 29 shows the CO₂ emissions for the proxy inventory in 2010 for 2C Metal Production compared to the inventory time series for the EU and all Member States.

Gas CO2 Member State Inventory data Inventory da	Proxy 2010 5 632 1 435 786 NA,NO
Member State Inventory data Inventory inventer inventere inventory inventory inventere inventory inventory	Proxy 2010 5 632 1 435 786 NA,NO
State 1990 1995 2000 2004 2005 2006 2007 2008 2009 Gg	2010 5 632 1 435 786 NA,NO
AT 3 725 3 942 4 221 4 463 5 014 5 212 5 502 5 824 4 429 BE 2 434 2 452 2 164 2 055 2 020 2 086 1 925 2 008 938 BG 2 073 2 680 2 132 1 961 1 819 1 793 1 602 698 79 CY NA,NO NA,NO </th <th>5 632 1 435 786 NA,NO</th>	5 632 1 435 786 NA,NO
AT 3 725 3 942 4 221 4 463 5 014 5 212 5 502 5 824 4 429 BE 2 434 2 452 2 164 2 055 2 020 2 086 1 925 2 008 938 BG 2 073 2 680 2 132 1 961 1 819 1 793 1 602 698 79 CY NA,NO NA,NO </th <th>5 632 1 435 786 NA,NO</th>	5 632 1 435 786 NA,NO
BE 2 434 2 452 2 164 2 055 2 020 2 086 1 925 2 008 938 BG 2 073 2 680 2 132 1 961 1 819 1 793 1 602 698 79 CY NA,NO	1 435 786 NA,NO
BG 2 073 2 680 2 132 1 961 1 819 1 793 1 602 698 79 CY NA,NO	786 NA,NO
CY NA,NO NA	NA,NO
CZ 12 533 8 659 7 086 7 798 6 687 7 572 7 757 7 151 5 298 DE 24 153 19 225 21 152 23 299 21 821 22 078 20 023 19 929 12 076 DK 28 39 41 NA,NO 16 NA,NO NA,NO NA,NO EE NA,NO NA,NO NA,NO NA,NO NA,NO NA,NO NA,NO NA,NO ES 3 386 2 023 3 004 3 574 3 819 3 538 3 502 2 608	
DE 24 153 19 225 21 152 23 299 21 821 22 078 20 023 19 929 12 076 DK 28 39 41 NA,NO 16 NA,NO	6 064
DK 28 39 41 NA,NO 16 NA,NO NA,NO NA,NO EE NA,NO NA,NO <t< td=""><td>17 509</td></t<>	17 509
EE NA,NO ES 3386 2,250 2,023 3,004 3,524 3,819 3,538 3,502 2,608	NA,NO
FS 3 386 2 250 2 923 3 094 3 524 3 819 3 538 3 502 2 608	NA,NO
	3 223
Fl 1 936 2 047 2 351 2 541 2 372 2 438 2 460 2 524 1 942	2 478
FR 4 377 5 486 4 173 4 869 4 534 4 133 4 101 3 869 3 343	3 747
UK 2 309 1 938 1 983 2 053 2 458 2 126 2 659 3 063 1 193	6 215
GR 947 969 953 1176 1210 1200 1263 1114 688	1 080
HU 550 296 303 314 311 270 290 272 180	217
IE NO NO NO NO NO NO NO NO NO	NO
IT 3 878 3 403 1 754 1 670 1 922 1 942 1 925 1 875 1 307	1 620
LT 21 6 7 7 7 7 5 4	5
LU 985 465 146 152 153 210 203 169 129	154
LV 13 4 8 13 12 13 15 9 10	11
MT NA,NO NA,NO NA,NO NA,NO NA,NO NA,NO NA,NO NA,NO NA,NO	NA,NO
NL 2 909 2 184 1 765 1 777 2 022 1 871 2 187 1 540 1 278	1 502
PL 7 370 5 073 5 194 4 722 7 158 8 386 8 565 9 207 5 940	7 422
PT 19 24 34 21 21 22 23 24 21	23
RO 10 857 9 293 5 852 6 934 7 357 8 600 8 871 6 030 3 994	6 325
SE 3 075 3 349 3 155 3 375 3 097 2 956 3 104 2 981 1 684	2 841
SI 285 211 186 271 276 263 256 190 85	188
SK 5 772 5 120 5 682 6 596 6 188 6 201 6 132 5 609 4 735	5 811
EU-15 54 160 47 773 46 814 50 545 50 183 50 092 48 912 48 422 31 635	47 458
EU-25 80 704 67 142 65 280 70 265 70 822 72 804 71 932 70 865 47 887	67 176
EU-27 93 634 79 115 73 265 79 161 79 998 83 196 82 405 77 593 51 961	74 287
EU-10 20 343 19 309 16 400 19 720 20 038 22 711 23 020 22 442 16 252 EU-2 12 330 11 073 7 985 8 806 9 176 10 302 10 473 6 738 4 074	19718

Table 29CO2 emissions from 2C Metal Production

.2.3 Other source categories covering industrial processes

For all other source categories covering industrial processes, 2010 activity data from alternative data sources are lacking. These categories were extrapolated from 2009 GHG inventories, either by trend extrapolation or by taking the constant values of the year 2009. Constant values were used when past trends were inconsistent and strongly fluctuating and trend extrapolation were used when the historic time series showed good correlations with a linear trend.

Annex 1 provides a detailed overview of methods and data sources used for each source category and Member State.

.3 Agriculture

.3.1 4.A Enteric fermentation

.3.1.1 Methods and data sources used

Emissions from the source category 4A were calculated using activity rates and (implied) emission factors. Activity rates were obtained from the Eurostat annual statistics on agriculture and fisheries with data on animal production as well as from the annual inventory data in CRF format and the National Inventory Reports (NIR) submitted to the EU and to the UNFCCC. Annual animal population data provided by Eurostat were used for the following animal categories: dairy cattle, non-dairy cattle, swine, sheep and goats. Livestock surveys do not include poultry as Eurostat only provides livestock surveys for laying hens without broilers and hens. Buffalo, horses, mules and asses are also not covered by Eurostat animal production data. Therefore, the emissions of the corresponding animal categories were updated using data of previous years via trend extrapolation of UNFCCC inventory data submitted in 2011. The proxy CH₄ emissions for source category 4A were calculated based on the following equation:

Equation 25

$E_{4A}^{Y} = \sum_{i} L$	$AF_i^{Y-I} \cdot IEF_i^{Y-I} \cdot AR_i^Y + E_{other}^{Y-I}$
with	
$E_{_{4\!A}}^{_Y}$	Emissions for source category 4A
AF_i^{Y-l}	Adjustment factor for animal category i from previous year(s)
IEF_i^{Y-1}	Implied emission factor for animal categoryi from previous year(s)
AR_i^Y	Activity rate (livestock) for animal category i
$E_{other}^{\scriptscriptstyle Y-1}$	Emissions for other animals for source category 4A
	from previous year(s)

Activity rates provided by Eurostat encompass two animal livestock surveys in May/June and in December for the year Y-1. For each Member State how well the respective livestock surveys correspond with the data used in national GHG inventories was analysed. The results of the best fits differed for each MS and also for animal categories. For the estimation of approximated 2010 emissions, the animal population surveys were chosen which best corresponded with the livestock data reported in GHG inventories for past years. For some Member States and animal categories Eurostat livestock population tended to show a constant deviation over the time series compared to the animal population reported in GHG inventories. In such cases, a scaling factor was applied to achieve a 2009 data set comparable to animal population reported in GHG inventories (see Table 30). The scaling factor was derived on the basis of the most recent inventory data and the best fitting Eurostat dataset.

	Dainy aattla	Non doiny oottlo	Swine	Sheen	Conto
	Dairy cattle	Non-dairy cattle	Swine	Sneep	Goats
AT	Dec	Dec	Dec	Dec	Dec
BE	Dec	June	June	June + SF	June
BG	Dec	Dec	Dec	Dec	Dec
СҮ	Dec	Dec	Dec	Dec + SF	Dec + SF
cz	Dec + SF	Dec + SF	Dec	Dec + Extrap.	Dec + Extrap.+ SF
DE	June	June	Dec + SF	June	Dec + Extrap.
DK	June	Dec	June	Dec + Extrap.+ SF	no data
EE	Dec	Dec	Dec	Dec + Extrap.+ SF	Dec + Extrap.+ SF
ES	June	Dec	Dec	Dec	Dec
FI	Dec	Dec	Dec	Dec + Extrap.+ SF	Dec + Extrap.
FR	Dec	June	June + SF	Dec	Dec
GR	Dec	Dec	Dec + SF	Dec	Dec
HU	Dec	Dec	Dec	Dec	Dec + SF
IE	Dec	June + SF	June	June	June
ΙТ	Dec	June	Dec	Dec	Dec
LT	Dec	Dec	Dec	Dec	Dec
LU	Dec + SF	Dec	Dec	Dec	Dec
LV	Dec	Dec	Dec	Dec	Dec + Extrap.
мт	Dec	Dec	Dec	Dec	Dec
NL	June	Dec	June	Dec	Dec + SF
PL	June	Dec	Dec	Dec + SF	Dec
РТ	Dec	Dec	Dec	Dec	Dec
RO	Dec	Dec	Dec	Dec	Dec
SE	June	June	June	Dec + SF	no data
SI	Dec	Dec	Dec	Dec + Extrap.	Dec + Extrap.
SK	Dec + SF	Dec + SF	Dec	Dec	Dec
υκ	June	June	June	Dec + SF	no data

Table 30Data from animal livestock surveyed by Eurostat in May/June (June) and December (Dec)used for proxy methodology and including application of a scaling factor if necessary (+SF).

Implied emission factors for each animal category were derived from the national inventory data, which Member States submitted to the EU and the UNFCCC for the year Y-2 (Table 31).

Note: (-): No data available for the last four years, thus no estimation of GHG emissions by using the approach as described above could be done. Emissions from goats as derived from UNFCCC inventories have been extrapolated for these Member States.

4A	Dairy cattle	Non-dairy cattle	Swine	Sheep	Goats	4B	Dairy cattle	Non-dairy cattle	Swine	Sheep	Goats
		IEF [kg	g CH₄/head	/year]				IEF [kç	g CH₄/head	/year]	
AT	115.7	56.2	1.5	8.0	5.0	AT	8.6	4.0	1.1	0.2	0.1
BE	123.8	45.3	1.5	8.0	5.0	BE	16.3	2.6	9.7	0.6	0.8
BG	109.8	51.9	1.5	6.7	5.0	BG	30.2	15.0	9.2	0.1	0.1
CY	100.0	58.0	1.5	8.0	5.0	CY	42.0	21.0	19.0	0.4	0.3
CZ	117.5	51.6	1.5	8.0	5.0	CZ	14.0	6.0	3.0	0.2	0.1
DE	128.2	46.0	1.2	8.0	5.0	DE	29.1	5.7	4.6	0.2	0.2
DK	133.8	43.1	1.0	17.2	13.1	DK	33.1	10.5	2.1	2.8	2.4
EE	136.1	47.8	0.8	8.0	5.0	EE	10.6	3.3	3.2	0.2	0.1
ES	102.6	55.4	0.9	8.8	5.0	ES	16.1	1.2	9.5	0.2	0.2
FI	126.4	47.9	1.5	8.4	5.0	FI	14.8	3.3	3.8	0.2	0.1
FR	117.0	52.8	1.1	9.8	11.8	FR	18.3	19.8	20.9	0.3	0.2
GR	116.6	55.3	1.5	9.1	5.0	GR	9.3	1.7	7.0	0.3	0.2
HU	132.7	57.4	1.5	8.0	5.0	HU	7.7	2.1	10.9	0.2	0.1
IE	107.5	54.6	1.1	5.9	5.0	IE	20.4	11.2	12.7	0.2	0.1
IT	113.0	44.6	1.5	8.0	5.0	IT	12.7	6.6	6.7	0.2	0.1
LT	102.5	56.7	1.2	8.0	5.0	LT	20.9	10.6	15.3	0.2	0.1
LU	117.9	42.6	1.5	8.0	5.0	LU	36.7	8.7	19.5	0.2	0.1
LV	116.5	52.2	1.5	8.0	5.0	LV	10.3	4.0	4.0	0.2	0.1
МТ	100.0	48.0	1.5	8.0	5.0	МТ	44.0	20.0	10.0	0.3	0.2
NL	127.0	35.7	1.5	8.0	5.0	NL	41.7	7.5	4.4	0.2	0.4
PL	97.0	48.9	1.5	8.2	5.0	PL	10.5	4.9	6.5	0.2	0.1
PT	125.0	55.4	1.4	9.1	8.0	PT	6.8	1.4	21.4	1.7	1.8
RO	92.4	56.0	1.5	8.0	5.0	RO	19.0	13.0	7.0	0.3	0.2
SE	132.4	54.5	1.5	8.0	5.0	SE	20.2	6.7	3.3	0.2	0.1
SI	102.8	50.5	1.6	8.0	5.0	SI	55.9	21.6	14.3	0.2	0.1
SK	105.6	54.3	1.5	9.8	5.0	SK	4.0	3.8	4.0	0.2	0.1
UK	109.4	43.1	1.5	4.6	5.0	UK	26.9	4.2	7.1	0.1	0.1

Table 31Implied emission factors from national UNFCCC inventories in 2009 used for the calcula-
tion of CH4 emissions from Enteric Fermentation (4A, left) and Manure Management (4B,
right) for 2010.

Source: EEA's ETC ACM based on the 2011 EU greenhouse gas inventory to UNFCCC for 2009

.3.1.2 *Results for 2010*

Compared to 2009, GHG emissions from agriculture decreased in 2010 by -1.3 % for the EU-15 and by -1.5 % for the EU-27. Figure 13 indicates the sub-sector contribution.

Table 32 Change in GHG emissions between 2009 and 2010 in the agricultural sector

Sector Agriculture	hange 200	hange 2009/10							
_	EU-15	EU-15							
	Mt CO ₂ e	q %	Mt CO ₂ eq	%					
4 Agriculture	-4.9	-1.3%	-7.3	-1.5%					
4.A Enteric Fermentation	-2.0	-1.6%	-3.3	-2.2%					
4.B Manure Management	-0.5	-0.7%	-0.9	-1.1%					
4.D Agricultural Soils	-2.5	-1.3%	-3.2	-1.3%					

Source: EEA's ETC ACM based on the 2011 EU greenhouse gas inventory to UNFCCC for 1990-2009 and early estimates for 2010

Note: The sub-sectors does not sum up to the total for Agriculture as sub-sector 4.C Rice Cultivation is not considered for the analysis of the results. GHG emissions from Rice Cultivation are reported only by Bulgaria, France, Greece, Hungary, Italy, Portugal, Romania and Spain. The estimated change in GHG emissions in this minor source category amounts to 10.5 Gg CO₂eq for the EU-15 and 3.4 Gg CO₂eq for the EU-27 from 2009 to 2010.

The decrease was dominated by the reduction of N₂O emissions in the source category Agricultural Soils, especially in Sweden (-0.8 Mt CO₂) and the UK (-0.9 Mt CO₂eq). Compared to 2009, the total utilised agricultural area in the UK decreased slightly by 0.5 %³⁸. As the annual consumption of synthetic fertilizer is estimated based on crop areas and fertilizer application rate, a reduced area might contribute to the reduction of N₂O emissions from agricultural soils in the UK. In Sweden, the number of cattle decreased by 1 % during 2009 and 2010³⁹, resulting in a decreased rate of manure applied to soil and thus less emissions of N₂O.

The reduction of CH₄ emissions from Enteric Fermentation also contributed to the decrease of GHG emissions from Agriculture. Among EU-15 Member States, based on data derived from Eurostat, Italy and France showed a slight decrease in the number of cattle. For the new EU Member States, Romania had the largest emission reductions from Enteric Fermentation (minus 0.9 Mt CO₂eq) due to a significant decline in the numbers of cattle, swine and sheep numbers (except for goats), resulting in minor CH₄ emissions from Enteric Fermentation and Manure Management (minus 0.2 Mt CO₂eq). Accordingly, based on results of statistical survey on "Livestock and animal production in 2010", the Romanian National Institute of Statistics found that animal production in Romania decreased in 2010 compared to 2009⁴⁰.

⁴⁰ National Institute of Statistics Bulgaria 2011

³⁸ DEFRA 2011

³⁹ SverigesOfficiellaStatistik 2011

Figure 13 Change in GHG emissions from 2009 and 20010 in the agricultural sector

Source: EEA's ETC ACM based on the 2011 EU greenhouse gas inventory to UNFCCC for 1990-2009 and early estimates for 2010

Table 33 presents the CH₄ emissions for the proxy inventory in 2010 for 4A Enteric Fermentation compared to the inventory time series for the EU and all Member States.

Source Category	4A	A. Enteric Fe	ermentation									
Gas	CH4											
Member			I	nventory da	ta					Proxy		
State	1990	1995	2000	2004	2005	2006	2007	2008	2009	2010		
		Gg										
AT	178.73	172.08	162.71	155.69	153.74	153.23	153.84	153.52	155.49	154.87		
BE	196.74	196.64	183.49	169.85	167.71	166.20	168.86	167.90	168.96	169.49		
BG	185.62	93.25	84.74	77.10	75.04	73.06	68.74	67.48	64.04	61.30		
CY	8.21	9.25	9.05	9.43	9.17	8.80	8.95	8.99	7.84	8.13		
CZ	231.88	144.39	122.72	113.80	113.97	111.84	112.94	114.84	112.19	109.49		
DE	1 299.70	1 139.70	1 072.07	1 005.70	1 001.33	979.17	983.54	998.76	997.65	990.20		
DK	154.69	148.51	135.80	129.52	129.08	129.17	132.34	133.15	136.14	141.19		
EE	52.36	26.77	20.80	21.14	21.31	21.40	21.02	21.08	20.78	20.85		
ES	551.41	561.89	623.65	638.43	628.85	621.80	632.46	603.72	596.60	588.05		
FI	92.05	80.80	78.92	76.90	76.33	76.38	75.34	74.80	75.25	74.31		
FR	1 527.01	1 490.35	1 479.13	1 402.19	1 402.89	1 402.42	1 404.07	1 420.77	1 403.99	1 364.96		
UK	871.98	859.35	809.08	759.15	768.18	752.50	748.72	730.99	718.73	721.24		
GR	154.58	151.58	154.31	156.12	156.48	156.17	155.32	154.78	154.07	155.04		
HU	155.71	93.03	90.37	82.33	81.81	79.27	79.24	77.95	76.89	73.64		
IE	452.88	459.71	453.60	441.25	438.49	436.38	421.98	420.20	414.30	399.68		
IT	579.93	584.15	579.30	515.89	516.24	506.01	524.93	520.04	513.30	490.63		
LT	149.22	71.40	55.60	60.05	59.65	61.90	64.21	64.82	60.87	61.41		
LU	12.45	12.23	11.84	11.10	11.09	10.98	11.38	11.63	11.73	11.41		
LV	102.29	41.51	30.89	31.11	32.10	31.75	33.21	32.04	31.79	31.76		
MT	1.60	1.70	1.79	1.75	1.74	1.67	1.71	1.61	1.52	1.42		
NL	359.04	348.59	307.93	298.88	298.16	297.47	301.41	307.43	309.34	311.44		
PL	742.75	513.11	463.07	417.40	426.14	436.59	443.16	444.65	437.83	424.94		
PT	125.58	133.39	142.59	143.13	144.25	144.25	141.48	140.84	136.27	126.66		
RO	492.72	328.32	270.81	276.54	280.24	287.85	283.20	304.38	292.81	251.83		
SE	145.62	147.38	137.00	134.50	133.04	133.02	130.29	129.43	128.42	127.14		
SI	31.23	30.79	33.06	30.98	31.52	31.60	33.05	32.33	32.08	31.73		
SK	94.77	66.90	50.16	44.85	45.53	44.79	44.51	43.13	41.20	40.78		
EU-15	6 702.40	6 486.35	6 331.43	6 038.29	6 025.87	5 965.14	5 985.98	5 967.98	5 920.23	5 826.32		
EU-25	8 272.42	7 485.20	7 208.94	6 851.12	6 848.81	6 794.76	6 827.97	6 809.42	6 743.22	6 630.47		
EU-27	8 950.77	7 906.78	7 564.49	7 204.76	7 204.10	7 155.67	7 179.91	7 181.28	7 100.08	6 943.60		
EU-10	1 570.02	998.85	877.51	812.83	822.94	829.61	841.99	841.44	822.99	804.15		
EU-2	678.34	421.57	355.55	353.64	355.29	360.91	351.94	371.86	356.85	313.13		

Table 33CH4 emissions from 4A Enteric Fermentation

.3.1.3 Results for past trends

The use of Eurostat data results in small deviations of emissions for the actual inventory year 2009. Table 34 shows the percentage differences between emissions from proxy inventory calculations and the emissions derived from UNFCCC inventory submissions. As only data for dairy cattle, non-dairy cattle, sheep, goats and swine was available from Eurostat, comparison was done for the aggregate emissions of these categories. For several countries the proxy methodology results in slightly higher (positive deviation) or lower values (negative deviation) than the reported emissions. Most of the Member States exhibit only slight discrepancies in underlying animal numbers thus resulting in similar levels of emissions. The deviations between both approaches are higher for early years of the time series from 1990-2009 (in particular for new Member States), but increasing consistency between both data sources could be observed for nearly all countries in the most recent years.

	1000	1005	2000	2001	2002	2002	2004	2005	2006	2007	2009	2000
	1990	1995	2000	2001	2002	2003 [%]	2004	2005	2000	2007	2000	2009
AT	NE	6.6%	3.3%	2.6%	2.4%	1.7%	0.8%	0.5%	0.2%	-0.1%	0.0%	0.0%
BE	7.7%	3.4%	9.4%	7.5%	6.3%	5.9%	5.8%	4.6%	4.6%	2.2%	1.3%	0.3%
BG	-3.0%	-2.7%	-11.4%	0.5%	3.7%	0.8%	-0.3%	-4.3%	-0.9%	0.6%	-3.4%	-2.0%
CY	-6.2%	-5.9%	-9.5%	-5.7%	-8.2%	-4.4%	-2.5%	-6.3%	-2.4%	-1.3%	-6.7%	6.7%
CZ	-95.5%	27.6%	15.9%	9.3%	6.4%	6.3%	5.1%	5.1%	6.3%	3.3%	-0.3%	0.0%
DE	-33.6%	5.8%	2.8%	1.7%	1.8%	1.2%	1.2%	0.4%	0.0%	-0.7%	0.1%	-0.1%
DK	9.9%	7.0%	16.4%	1.9%	0.1%	-0.7%	-2.6%	-3.9%	7.2%	2.0%	3.6%	2.5%
EE	21.0%	30.8%	16.7%	11.9%	11.6%	11.6%	9.0%	7.6%	4.2%	3.5%	0.9%	-0.1%
ES	11.2%	4.7%	4.8%	3.2%	4.0%	1.9%	4.2%	4.2%	2.3%	3.2%	-1.2%	0.5%
FI	NE	21.2%	9.7%	8.9%	6.8%	4.1%	2.8%	3.1%	1.4%	-0.5%	-0.2%	-1.3%
FR	7.2%	4.6%	0.5%	1.8%	1.5%	1.4%	1.2%	0.1%	-1.0%	-1.0%	-1.4%	-2.1%
GR	16.2%	6.8%	0.9%	-0.2%	-1.1%	1.5%	0.8%	-2.2%	0.6%	0.5%	-2.5%	0.4%
ΗU	0.7%	7.9%	1.9%	3.4%	3.3%	1.3%	2.3%	-0.2%	0.0%	-1.0%	-0.9%	-1.5%
IE	-12.6%	-2.3%	-2.7%	-1.6%	-1.9%	-1.6%	-1.5%	-2.3%	-3.2%	-3.1%	-1.1%	-0.2%
IT	16.6%	0.1%	-10.1%	4.7%	3.6%	2.9%	2.7%	1.0%	3.0%	-0.1%	1.0%	2.8%
LT	17.5%	27.3%	17.3%	14.8%	14.1%	13.6%	12.7%	13.0%	11.2%	2.5%	-0.8%	3.1%
LU	4.5%	-3.2%	-3.4%	-4.2%	-5.4%	-4.9%	-4.1%	-3.8%	0.9%	-3.3%	-1.3%	-2.4%
LV	11.0%	17.6%	8.6%	7.2%	7.7%	5.1%	5.0%	3.8%	3.0%	1.6%	0.5%	-0.3%
MT	-94.4%	-94.6%	NE	-0.4%	0.0%	-0.1%	-0.2%	-0.2%	-0.5%	-0.3%	-0.4%	0.0%
NL	2.3%	-3.4%	-3.8%	-5.0%	-3.1%	-3.2%	-2.9%	-2.7%	-4.4%	-4.7%	-4.3%	1.1%
PL	-90.5%	-92.7%	0.7%	1.2%	1.0%	1.6%	1.8%	1.5%	-0.1%	-2.0%	-1.9%	-1.9%
PT	14.0%	11.0%	3.0%	1.3%	1.0%	1.3%	2.0%	0.6%	-1.9%	-0.1%	-4.5%	-2.6%
RO	-71.5%	-68.3%	-71.9%	14.1%	13.1%	-72.9%	10.6%	11.9%	10.5%	11.8%	0.5%	0.6%
SE	NE	2.8%	5.3%	4.7%	4.4%	4.4%	3.9%	4.9%	3.3%	5.7%	3.0%	0.0%
SI	-96.4%	-96.0%	4.0%	2.8%	1.6%	1.4%	3.4%	-0.1%	-1.1%	-0.8%	-1.2%	0.0%
SK	-89.7%	-88.9%	14.0%	6.6%	8.6%	9.0%	6.7%	3.1%	0.4%	-0.8%	-0.7%	0.0%
UK	6.8%	3.7%	4.2%	4.3%	4.3%	3.9%	2.9%	1.0%	1.7%	0.6%	-0.3%	0.0%

Table 34Difference between emissions data obtained from inventory submissions to UNFCCC in
2009 and own calculation with Eurostat data for Enteric Fermentation from dairy cattle,
non-dairy cattle, sheep, goats and swine in percent, 1990-2009

For the past 5 years deviations between both approaches were

- below ± 3 % for Austria, Belgium, Bulgaria, Cyprus, the Czech Republic, Denmark, Germany, Spain, Finland, France, Greece the UK, Hungary, Ireland, Italy, Luxembourg, Latvia, Malta, the Netherlands, Poland, Portugal, Slovenia and Slovakia;
- below ± 5 % for Estonia and Sweden;
- below ± 10 % for Romania, Lithuania;

for none of the Member States deviations of more than \pm 10 % could be found

Detailed information about underlying causes for deviations is provided in Table 35 and Table 36

Table 35	Causes for high deviations and outliers in data between Eurostat and UNFCCC inventories
	for Enteric Fermentation for EU-15 Member States.

АТ	1990-1992: Eurostat does not provide activity data for non-dairy cattle. 1990-1993: No acitivity data for swine. 1990: No activity data for dairy cattle, goats, sheep.
BE	1990-1997: No activity data for swine from Eurostat available. 1990-2001, 2004-2005: No activity data for goats, sheep from Eurostat available. Difference in activity data available from Eurostat for sheep is larger than 10%. Activity data for dairy cattle provided by UNFCCC and Eurostat differ by more than 10% during 2004 and 2007. Difference in activity data available from Eurostat for goats is larger than 10% in 2002 and 2003. Lower IEF for 4A, dairy cattle in 1990 than in 2009.
DE	1990: Eurostat does not provide activity data for non-dairy cattle. 1990: No activity data for swine; difference in activity data available from Eurostat for swine is larger than 10% throughout the time series. 2009, 2010: Eurostat does not provide activity data for goats. IEFs for 4A and 4B, dairy cattle and swine are lower in 1990 than in 2009.
DK	provided by UNFCCC and Eurostat differ by more than 10%, by more than 20% in 1990, 2002, 2004, 2006-2008 and by more than 30% in 2005. 1990-1999, 2001-2005: Eurostat does not provide any activity data for swine.
ES	Acitivty data for goats provided by UNFCCC and Eurostat differ by more than 10% in 1995 and by more than 20% in 2008. Lower IEF for 4A, dairy cattle in 1990 than in 2009.
FI	1990: Eurostat does not provide any activity data for dairy cattle. 1990-1992: Eurostat does not provide any activity data for non-dairy cattle. 1990-1991, 2009-2010: Eurostat does not provide any activity data for goats. 1992, 1997-1999, 2001, 2005, 2007: Activity data for goats provided by UNFCCC and Eurostat differ by more than 10%, by more than 20% in 1994, 2000, 2002-2003 and my more than 30% in 2004. 1990: Eurostat does not provide any activity data for sheep. 1995-1996, 1998-2000, 2002, 2006-2009: Activity data for sheep provided by UNFCCC and Eurostat differ by more than 30% in 1993, 1994, 1997, 2001, 2003-2004 and by more than 40% in 1991-1992. 1990-1993: Eurostat does not provide activity data for swine. 1999-2001: Activity data for swine provided by UNFCCC and Eurostat differ by more than 30%. Increasing IEF for 4A, dairy cattle and swine during 1990 and 2009.
FR	1990-2000: Activity data for goats provided by UNFCCC and Eurostat differ by more than 10%. 1990-1997: Eurostat does not provide activity data for swine. Activity data for swine provided by UNFCCC and Eurostat differ by more than 40% during 1998-1999, by more than 30% 2000, 2004-2005 and by more than 20% in 2001-2003, 2006-2009.
GR	1994, 1999: Activity data for non-dairy cattle provided by UNFCCC and Eurostat differ by more than 10%. 1990-1993: Activity data for sheep provided by UNFCCC and Eurostat differ by more than 10%. 1990: Activity data for goats provided by UNFCCC and Eurostat differ by more than 10% and by more than 20% in 2008. 1990, 1993, 2006-2009: Activity data for swine provided by UNFCCC and Eurostat differ by more than 10%.
IE	1990-1998 and 2001-2009: Activity data for non-dairy cattle provided by UNFCCC and Eurostat differ by more than 10%. 1990, 1991: Eurostat does not provide activity data for sheep. 1990-1999, 2009, 2010: Eurostat does not provide activity data for goats. 1990-1997: Eurostat does not provide activity data for
п	2000: Activity data for dairy cattle provided by UNFCCC and Eurostat differ by more than 10%. 1990: Activity data for non-dairy cattle provided by UNFCCC and Eurostat differ by more than 10%. 1990-1993: Activity data for sheep provided by UNFCCC and Eurostat differ by more than 20% and by more than 30% in 2000. Activity data for goats provided by UNFCCC and Eurostat differ by more than 10% in 1994 and by more than 30% in 2000. Lower IEF for 4B, dairy cattle, non-dairy cattle and swine in 2009 than in 1990.
LU	2000, 2006-2008: Difference between activity data (UNFCCC and Eurostat) is larger than 10% in 2006 and 2008-2009. 1997-2001, 2005-2007: Activity data for sheep provided by UNFCCC and Eurostat differ by more than 10% and by more than 20% in 1991, 1994, 2003-2004. 1990-2007: Activity data for goats provided by UNFCCC and Eurostat differ by more than 20%. 2005, 2009: Activity data for swine provided by UNFCCC and Eurostat differ by more than 10%.
NL	1990, 1992, 1995-1997, 1999: Activity data for sheep provided by UNFCCC and Eurostat differ by more than 10%, by more than 20% in 1994, 2003, 2005-2008 and by more than 30% in 1993 and 2004. 1992-1994, 2009: Activity data for goats provided by UNFCCC and Eurostat differ by more than 10% and by more than 20% in 1990. 1990-2008: No activity data for swine.
РТ	1992, 1994-1995, 1997-1998, 2000, 2004-2006: Activity data for goats provided by UNFCCC and Eurostat differ by more than 10%. 1990-1993: Eurostat does not provide activity data for swine.
SE	1990-1991: Eurostat does not provide activity data for dairy cattle and non-dairy cattle. 1990: Eurostat does not provide activity data for sheep. 2009: Activity data for sheep provided by UNFCCC and Eurostat differ by more than 40%. 1990, 2006-2010: Eurostat does not provide activity data for goats. 1990-1997: Eurostat does not provide activity data for swine.
υκ	2002, 2003, 2006-2010: Eurostat does not provide activity data for goats. 1990-2009: Activity data for sheep provided by UNFCCC and Eurostat differ by more than 30%. 1990-1996: Eurostat does not provide activity data for swine.

Table 36	Causes for high deviations and outliers in data between Eurostat and UNFCCC inventories
	for Enteric Fermentation for EU-12 Member States

BG	1992, 1998: Activity data for dairy cattle provided by Eurostat and UNFCCC differ by more than 10% and by more than 20% 1993-1994. 1991, 1995-1996, 1998, 2002: Activity data for non-dairy cattle provided by Eurostat and UNFCCC differ by more than 10% and by more than 20% 1992-1994. 1991, 1996-1997: Activity data for sheep provided by Eurostat and UNFCCC differ by more than 20% 1992-1994 and 2000. 1990-1995, 1996-1997, 2000, 2008: Activity data for goats provided by Eurostat and UNFCCC differ by more than 10%. 1994, 1997-1998, 2002: Activity data for swine provided by Eurostat and UNFCCC differ by more than 10%. 1994, 1997-1998, 2002: Activity data for swine provided by Eurostat and UNFCCC differ by more than 10% and by more than 20% 1991-1993, 1996 and 2000.
СҮ	2007: Activity data for sheep provided by Eurostat and UNFCCC differ by more than 10% and by more than 30% in 2009. 2006: Activity data for goats provided by Eurostat and UNFCCC differ by more than 20% and by more than 50% 2009.
cz	1990-1994: Eurostat does not provide activity data for dairy cattle. 1996-1997, 1999-2001: Activity data for dairy cattle provided by Eurostat and UNFCCC differ by more than 10% and by more than 20% in 2002-2008 and by more than 30% in 2009. 1990-1994: Eurostat does not provide activity data for non-dairy cattle. 2003, 2005-2009: Activity data for non-dairy cattle provided by Eurostat and UNFCCC differ by more than 10%. 1994-1995, 2003, 2005-2006: Activity data for sheep provided by Eurostat and UNFCCC differ by more than 10%. 1994-1995, 2003, 2005-2006: Activity data for sheep provided by Eurostat and UNFCCC differ by more than 10% and by more than 20% in 1991-1993, 1997 and 2004. 2000, 2004, 2006: Activity data for goats provided by Eurostat and UNFCCC differ by more than 20% in 2001, 2005 and 2009.1990: No activity data for swine. 2009, 2010: Eurostat does not provide activity data for goats.
EE	2009, 2010: Eurostat does not provide activity data for sheep. 2009, 2010: Eurostat does not provide activity data for goats. Activity data for goats provided by UNFCCC and Eurostat differ by more than 20% in 2000. IEFs for 4A and 4B, dairy cattle are lower in 1990 than in 2009.
HU	1990: Activity data for dairy cattle provided by Eurostat and UNFCCC differ by more than 10%. 1992: Activity data for non-dairy cattle provided by Eurostat and UNFCCC differ by more than 10%. 1993, 1994: Activity data for sheep provided by Eurostat and UNFCCC differ by more than 10%. No activity data for goats 1990-1999. Activity data for goats provided by UNFCCC and Eurostat differ by more than 10% in 2000-2004, 2006 and 2009. 1992-1994: Activity data for swine provided by Eurostat and UNFCCC differ by more than 10% in 2000-2004, and 2009. 1992-1994: Activity data for swine provided by Eurostat and UNFCCC differ by more than 10% in 2000-2004, and 2009.
LT	2007, 2008: Activity data for sheep provided by UNFCCC and Eurostat differ by more than 10%. IEFs for 4A and 4B, dairy cattle and non-dairy cattle are lower in 1990 than in 2009.
LV	2009 and 2010: Eurostat does not provide activity data for sheep and goats. IEF for 4A and 4B, dairy cattle are lower in 1990 than in 2009.
мт	1990-2000: Eurostat does not provide activity data for dairy cattle, non-dairy cattle, sheep and goats. 2001: Activity data for sheep provided by UNFCCC and Eurostat differ by more than 20%. 2001: Activity data for goats provided by UNFCCC and Eurostat differ by more than 30% and by more than 10% in 2008. 1990, 1993, 1996: Activity data for swine provided by UNFCCC and Eurostat differ by more than 10%. No activity data for swine in 1999, 2000.
PL	1990-1997: Eurostat does not provide activity data for dairy cattle and non-dairy cattle. 1994, 1995, 2008: Activity data for sheep provided by UNFCCC and Eurostat differ by more than 10% and by more than 20% in 1991-1993, 2009. 1990-1995, 1997, 2001-2005: Eurostat does not provide activity data for goats.
RO	1990-2000, 2003: Eurostat does not provide activity data for dairy cattle and non-dairy cattle. 1992: Activity data for sheep and goats provided by UNFCCC and Eurostat differ by more than 10%. 1992, 1994, 1997: Activity data for swine provided by UNFCCC and Eurostat differ by more than 10%. IEFs for 4A and 4B, sheep in 2008 and 2009 are higher than in previous years.
SI	1990-1996: Eurostat does not provide activity data for dairy cattle and non-dairy cattle. 1997: Eurostat does not provide activity data for sheep. 1993, 1995: Activity data for sheep provided by UNFCCC and Eurostat differ by more than 20% and by more than 30% in 1994, 1996. 1990-1991, 1997: Eurostat does not provide activity data for goats. 1993: Activity data for goats provided by UNFCCC and Eurostat differ by more than 10% and by more than 20% in 1996.
SK	1990-1996: Eurostat does not provide activity data for dairy cattle and non-dairy cattle. 2000-2009: Activity data for dairy cattle provided by UNFCCC and Eurostat differ by more than 10%. 2005-2009: Activity data for non-dairy cattle provided by UNFCCC and Eurostat differ by more than 10%. 1992: Activity data for sheep provided by UNFCCC and Eurostat differ by more than 10%. 1992: Activity data for goats cattle provided by UNFCCC and Eurostat differ by more than 20%. 1990-2003: Activity data for swine provided by UNFCCC and Eurostat differ by more than 20%.

.3.2 4.B Manure Management

.3.2.1 Methods and data sources used

For the estimation of CH₄ emissions from Manure Management the same Eurostat data were used as for the calculation of CH₄ emissions from Enteric Fermentation. Data from livestock surveys provided by Eurostat were used according to Table 30. The emission estimation follows a similar equation than the one for 4.A because of the same proxy methodology:

Equation 26

$E_{4B}^{Y} = \sum_{i} A$	$AF_i^{Y-1} \cdot IEF_i^{Y-1} \cdot AR_i^Y + E_{other}^{Y-1}$
with	
$E_{_{4B}}^{_{Y}}$	Emissions for source category 4B
AF_i^{Y-1}	Adjustment factor for animal category i from previous year(s)
$I\!E\!F_i^{Y-1}$	Implied emission factor for animal category i from previous year(s)
AR_i^Y	Activity rate (livestock) for animal category i
E_{other}^{Y-1}	Emissions for other animals for source category 4B
	from previous year(s)

Implied emission factors for each animal category for category 4.B were derived from the national inventory data submitted to the EU and the UNFCCC for the year Y-2, see Table 31.

.3.2.2 Results for 2010

Table 37 presents the CH₄ emissions for the proxy inventory in 2010 for 4B Manure Management compared to the inventory time series for the EU and all Member States.

Source Category	4B	B. Manure M	lanagement							
Gas	CH4									
Member				nventory dat	a					Proxy
State	1990	1995	2000	2004	2005	2006	2007	2008	2009	2010
						ġ				
AT	20.53	19.43	17.16	15.70	15.56	15.34	15.38	14.99	15.26	15.20
BE	82.27	87.60	83.29	75.01	74.35	74.51	76.09	76.41	77.17	77.51
BG	104.87	55.52	43.56	42.84	41.00	41.70	40.09	37.76	36.10	33.95
CY	7.81	10.19	10.53	11.61	10.86	11.17	11.12	11.42	11.34	11.38
CZ	48.07	32.07	27.88	24.57	23.64	23.35	23.35	22.47	20.71	20.06
DE	315.13	291.51	287.97	278.96	282.83	276.64	280.66	284.24	287.04	286.09
DK	46.47	50.74	53.69	58.25	56.83	55.61	59.33	58.03	58.47	60.07
EE	6.99	3.59	2.67	2.80	2.80	2.79	2.88	2.83	2.80	2.83
ES	193.92	214.73	251.67	263.44	259.92	273.93	279.40	265.51	266.28	272.33
FI	11.76	12.92	13.56	14.15	14.57	14.55	14.52	14.72	14.13	13.84
FR	656.12	649.85	662.17	657.34	659.48	659.61	672.53	673.02	657.32	645.91
UK	170.76	168.15	153.27	140.84	142.57	140.78	138.53	135.16	133.33	131.51
GR	16.07	15.96	15.81	15.75	15.80	15.73	15.58	15.59	15.56	15.63
HU	112.54	66.61	67.30	59.83	55.03	54.01	54.81	50.74	45.84	44.70
IE	111.11	112.18	110.20	107.71	107.45	106.56	102.99	102.80	101.88	98.19
IT	164.86	156.48	156.10	150.14	149.93	144.20	145.43	140.99	137.41	136.70
LT	63.35	32.26	22.99	27.32	28.03	28.52	28.95	27.42	26.53	26.59
LU	3.79	4.46	4.99	4.54	4.72	4.64	4.35	4.43	4.50	4.61
LV	13.04	5.11	3.72	3.98	4.02	4.01	4.12	4.23	4.48	4.54
MT	1.36	1.28	1.58	1.52	1.45	1.44	1.49	1.34	1.30	1.30
NL	142.77	149.16	135.42	123.87	123.69	123.60	124.71	127.66	137.49	138.37
PL	160.94	169.76	159.15	162.80	170.54	178.01	173.78	156.29	147.94	149.32
PT	56.27	58.85	58.36	59.11	59.28	60.13	60.19	60.25	60.26	54.87
RO	180.64	114.51	84.87	95.47	97.39	99.71	96.29	101.16	95.78	85.01
SE	16.62	19.81	18.58	21.39	23.01	22.56	22.51	22.12	22.13	22.09
SI	22.70	20.39	20.55	20.31	20.50	20.90	21.58	20.15	20.48	20.02
SK	17.56	13.25	9.52	7.84	7.66	7.49	6.84	5.85	5.94	5.69
EU-15	2 008.47	2 011.82	2 022.26	1 986.19	1 989.97	1 988.38	2 012.19	1 995.94	1 988.23	1 972.92
EU-25	2 462.83	2 366.33	2 348.13	2 308.78	2 314.50	2 320.06	2 341.12	2 298.67	2 275.61	2 259.35
EU-27	2 748.34	2 536.36	2 476.57	2 447.08	2 452.89	2 461.48	2 477.50	2 437.58	2 407.49	2 378.31
EU-10	454.36	354.51	325.88	322.59	324.53	331.68	328.93	302.73	287.38	286.43
EU-2	285.51	170.03	128.43	138.30	138.39	141.41	136.38	138.91	131.88	118.96

Table 37CH4 emissions from 4B Manure Management

.3.2.3 Results for past trends

The calculation with Eurostat data shows good estimates of emissions for the present inventory year 2010. Table 38 provides an overview of the percentage differences between calculated emissions from manure management based on the proxy methodology and the emissions from the same category reported in the 2011 national GHG inventory submission.

As for category 4.A the proxy methodology shows slightly higher (positive deviation) or lower values (negative deviation) than the reported emissions. Although the same activity data were used for both categories 4.A and 4.B, the deviances between the data obtained from our own calculations and from the UNFCCC differ due to the different implied emission factors (IEF) used for sub-categories 4.A and 4.B. The share of emissions from swine in category 4.B, for example, is larger than in category 4.A due to the higher IEF, ranging in the same order of magnitude as for non-dairy cattle. Therefore, lacking activity data for swine which result in deviances of emissions is more relevant for this category. This is the case for Belgium, France, Sweden and Ireland (1990-1997), Portugal, Finland and Austria (1990-1993), Germany (1990), Denmark (1990-1999 and 2001-2005) the Netherlands (1990-2008) and the UK (1990-1996), but especially for Member States whose emission profile for Manure Management is dominated by the number of swine, e.g. Denmark and the Netherlands.
Small discrepancies in underlying animal numbers result in only slight differences in emissions for most of the Member States. Thus, similar levels of emissions could be found for recent years. Going backwards in the time series, however, results in an increasing difference due to different animal numbers provided by UNFCCC inventories and Eurostat for most Member States, lack of data for some livestock categories as well as higher IEFs in the early nineties (whereas the IEF derived from 2009 GHG inventories was used to calculate emission estimates).

Table 38Difference between emissions data obtained from inventory submissions to UNFCCC in
2009 and own calculation with Eurostat data for Manure Management from dairy cattle,
non-dairy cattle, sheep, goats and swine in percent, 1990-2009.

	1990	1995	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
						[%]						
AT	NE	-7.8%	-5.1%	-4.7%	-3.9%	-3.0%	-2.2%	-2.2%	-1.4%	-0.7%	0.3%	0.0%
BE	-75.7%	-79.3%	7.4%	4.3%	4.6%	4.3%	4.1%	3.9%	2.8%	0.0%	-0.6%	-0.9%
BG	0.9%	3.0%	-16.7%	3.2%	9.0%	4.6%	0.5%	-0.8%	1.4%	-0.8%	-3.4%	-2.3%
CY	-0.3%	-0.3%	0.5%	-0.3%	-0.5%	0.3%	1.1%	-0.3%	-0.1%	3.2%	-0.3%	0.2%
CZ	-69.7%	10.0%	5.4%	1.5%	2.1%	1.3%	-1.6%	0.1%	1.4%	-1.4%	-4.6%	-0.9%
DE	-37.4%	8.1%	3.9%	3.1%	3.1%	2.5%	3.2%	2.0%	2.1%	1.0%	0.9%	0.0%
DK	-8.2%	-22.0%	18.3%	-37.3%	-40.8%	-42.3%	-46.1%	-45.4%	8.9%	1.9%	1.3%	1.7%
EE	18.1%	19.3%	10.9%	6.5%	5.3%	5.9%	7.0%	5.4%	2.0%	-0.1%	0.4%	0.0%
ES	-1.6%	-4.1%	-2.8%	2.2%	1.8%	1.4%	2.5%	3.7%	2.4%	-0.1%	5.1%	1.1%
FI	NE	39.0%	29.1%	26.2%	18.4%	10.4%	8.6%	4.6%	2.8%	0.0%	-1.9%	-1.6%
FR	-30.4%	-31.2%	6.6%	4.6%	3.7%	3.6%	2.0%	0.8%	-0.6%	-2.1%	-1.9%	-1.2%
GR	8.0%	-8.7%	-8.0%	-11.8%	-4.3%	-5.1%	-5.5%	-8.2%	-1.6%	-1.4%	-1.7%	-0.1%
ΗU	-8.1%	-0.6%	-4.4%	-0.1%	0.1%	-2.4%	-6.7%	-3.9%	1.0%	-3.9%	-7.1%	-0.2%
IE	-25.9%	-25.3%	-3.6%	-2.9%	-3.3%	-1.8%	-1.8%	-1.9%	-2.3%	-2.0%	-1.7%	-1.0%
IT	-10.0%	-15.3%	-15.5%	-12.6%	-9.9%	-10.3%	-9.5%	-9.3%	-5.6%	-5.4%	-1.4%	1.7%
LT	13.8%	16.6%	14.5%	11.2%	10.6%	11.0%	10.1%	9.5%	9.1%	-5.3%	-2.6%	1.4%
LU	24.3%	-1.9%	-11.1%	-11.8%	-12.0%	-11.2%	-8.7%	-12.0%	-3.2%	1.0%	-0.9%	2.4%
LV	21.3%	31.2%	26.0%	24.2%	23.6%	20.8%	21.3%	20.4%	19.3%	18.0%	7.9%	-0.1%
MT	-54.6%	-49.9%	NE	-0.1%	0.0%	0.0%	0.0%	-0.1%	-0.2%	-0.1%	-0.1%	0.0%
NL	-20.5%	-32.4%	-35.3%	-33.5%	-34.2%	-32.0%	-33.4%	-33.2%	-34.7%	-35.2%	-34.8%	0.9%
PL	-8.5%	-13.5%	9.4%	11.8%	1.1%	-0.6%	1.9%	2.5%	-0.7%	-2.6%	-5.8%	-0.8%
PT	-80.1%	9.3%	6.6%	7.0%	4.4%	1.2%	4.7%	4.1%	0.4%	2.5%	-1.1%	-1.1%
RO	-50.1%	-47.3%	-56.2%	1.2%	1.3%	-54.8%	1.5%	1.4%	1.5%	1.5%	0.4%	0.5%
SE	NE	3.2%	40.3%	24.4%	23.9%	15.5%	15.1%	5.6%	4.1%	4.8%	2.7%	0.0%
SI	-61.6%	-57.6%	19.8%	16.7%	11.6%	8.8%	9.8%	7.5%	6.1%	4.5%	2.4%	0.0%
SK	-37.2%	-31.2%	0.4%	0.3%	0.4%	0.2%	0.4%	0.4%	0.3%	0.2%	0.2%	0.0%
UK	-24.6%	-27.8%	7.0%	6.8%	5.8%	5.9%	4.7%	-0.3%	0.4%	0.0%	0.2%	-1.1%

For the past 5 years deviations between both approaches were

- below ± 3 % for Austria, Belgium, Bulgaria, Cyprus, the Czech Republic, Estonia, Spain, Germany, Finland, France, the UK, Hungary, Ireland, Lithuania, Luxembourg, Malta, Poland, Portugal, Romania, and Slovakia;
- below ± 5 % for, Italy, Slovenia and Sweden;
- below ± 10 % for Denmark;
- above ± 10 % for Latvia and the Netherlands: The Latvian IEF for dairy cattle increased by 30 % during 2007 and 2008. Thus, the estimation of CH₄ emissions for recent years by using the 2009 IEF results in an overestimation of emissions for the period 1990-2007. For the Netherlands, the large deviations since 1990 to 2008 could be explained by the Dutch emissions profile for 4B. Besides dairy cattle, swine is the second largest emission source for this

sub-category. As Eurostat does not provide data for swine for the years 1990-2008, the lack of data results in a large deviation compared to UNFCCC estimates.

Inconsistencies in time series are caused by a lack of data or an update of IEFs. Especially for the new Member States, Eurostat animal surveys lack data for dairy cattle in the early 1990s (the Czech Republic (1990-1994), Malta (1990-2000), Poland (1990-1997), Romania (1990-2000, 2003), Slovenia and Slovak Republic (1990-1996)). But also for some EU-15 Member States, no activity data for dairy cattle could be obtained from Eurostat for 1990 (Austria (1990-1992), Finland (1990) and Sweden (1990-1992)).

The reported IEFs for the relevant animal category in UNFCCC time series changed over the time series whereas the proxy methodology uses constant recent IEFs for all years. This is another important reason for larger differences in the past. Except for Cyprus and Malta, for all EU-27 Member States an increase of IEFs for dairy cattle and non-dairy cattle could be found, resulting in an overestimation of CH₄ emissions for those countries with increasing IEF in the early nineties. An increase of the IEF follows the increasing trend in milk production during the observed period which is a result of an increase in feed intake and a change in nutrient composition, affecting digestibility and the methane conversion factor (1996 IPCC Guidelines). Figure 14 and Figure 15 illustrate the change of IEF for sub-category 4.A during 1990 and 2009 for EU-15 and EU-10 Member States.

Source: 2011 EU greenhouse gas inventory to UNFCCC for 1990-2009

Figure 15 Change of IEF for enteric fermentation during 1990 and 2009 for EU-10 Member States

Source: 2011 EU greenhouse gas inventory to UNFCCC for 1990-2009

Country-specific information about underlying causes for deviances is provided in Table 36.

.3.3 4.D Agricultural Soils

.3.3.1 Methods and data sources used

Consumption estimates of manufactured fertilizers from Eurostat that are obtained from Fertilizer Europe were not available for the compilation of this report. No activity rates for the estimation of emissions from the source category 4.D.1 could be obtained but only fertilizer forecasts for EU-15 and EU-27 in 2010. Thus, in order to calculate emissions from Agricultural Soils the sub-sectors 4.D.1.1 Synthetic Fertilizers, 4.D.1.2 Animal Manure applied to Soils, 4.D.1.3 Nfixing crops, 4.D.1.4 Crop residue 4.D.1.5 Cultivation of Histosols and 4.D.1.6 Other Direct Emissions were extrapolated from 2009 GHG inventories, either by trend extrapolation or by taking the constant values of the year 2009. Constant values were used when past trends were inconsistent and strongly fluctuating and trend extrapolation were used when the historic time series showed good correlations with a linear trend. These source categories were then added to derive emissions from 4.D.1.

The emissions of the other categories 4.D.2 to 4.D.6 were updated using data of previous years via trend extrapolation of UNFCCC inventory data submitted in 2011.

.3.3.2 *Results for 2010*

Table 39 presents the N₂O emissions for the proxy inventory in 2010 for 4D Agricultural Soils compared to the inventory time series for the EU and all Member States.

Source Category	4D	D. Agricultura	al Soils							
Gas	N2O									
Member			1	nventory dat	a					Proxy
State	1990	1995	2000	2004	2005	2006	2007	2008	2009	2010
					G	g				
AT	11.06	12.04	10.30	9.41	9.46	9.61	9.75	10.23	9.99	9.88
BE	15.36	15.29	13.81	12.66	12.31	12.32	12.19	11.82	11.85	11.85
BG	28.94	13.03	10.93	12.08	11.13	10.72	10.42	11.25	11.17	11.14
CY	0.73	0.80	0.86	0.89	0.80	0.73	0.78	0.49	0.38	0.38
CZ	30.19	18.42	16.36	16.40	15.54	15.30	15.81	16.46	15.41	15.50
DE	161.47	141.53	149.29	144.80	142.59	139.42	137.77	146.25	140.30	140.28
DK	24.36	21.55	18.67	17.14	16.89	16.47	16.88	17.19	16.41	16.34
EE	4.81	2.02	2.00	1.99	1.89	1.97	2.11	2.44	2.20	2.23
ES	61.47	55.41	71.69	65.92	60.10	61.98	63.83	55.19	56.34	55.75
FI	12.86	11.73	11.19	11.09	11.13	11.16	11.27	11.71	11.10	11.20
FR	180.45	165.32	171.36	159.26	157.49	152.72	152.64	158.97	149.68	149.10
UK	103.52	98.96	93.84	87.79	86.76	82.87	80.68	80.77	80.34	77.60
GR	24.04	20.56	19.24	18.70	17.71	17.22	18.09	15.95	15.85	15.81
HU	22.92	13.82	15.28	17.34	16.08	16.73	16.89	16.88	15.69	15.22
IE	22.78	24.39	24.04	22.64	22.22	21.71	20.73	20.35	20.28	20.16
IT	62.84	62.66	62.39	60.34	58.39	57.89	57.79	54.45	49.87	48.75
LT	15.22	5.35	6.53	7.64	7.54	8.92	8.04	7.62	8.03	7.84
LU	1.17	1.14	1.12	1.06	0.99	0.98	0.97	0.99	0.99	1.00
LV	9.57	3.56	3.44	3.83	4.05	4.07	4.24	4.24	4.36	4.41
MT	0.07	0.09	0.09	0.07	0.07	0.08	0.07	0.06	0.06	0.06
NL	34.42	33.66	27.27	23.34	22.88	22.91	21.77	21.19	20.48	20.23
PL	75.14	54.77	52.68	52.69	52.58	55.74	58.27	60.10	58.46	57.53
PT	11.03	10.72	11.86	10.27	9.51	9.16	9.86	9.41	9.37	9.37
RO	83.53	58.59	43.41	46.96	52.04	51.35	43.89	49.92	49.86	49.32
SE	16.46	16.21	15.40	15.20	14.91	14.97	14.84	14.94	14.80	12.34
SI	2.41	2.46	2.62	2.42	2.42	2.46	2.47	2.29	2.39	2.33
SK	11.71	6.06	5.46	5.43	5.42	5.35	5.78	5.61	5.33	5.14
EU-15	743.30	691.15	701.46	659.63	643.32	631.38	629.08	629.40	607.67	599.66
EU-25	916.07	798.50	806.77	768.31	749.70	742.74	743.54	745.60	719.99	710.31
EU-27	1 028.54	870.12	861.11	827.35	812.87	804.81	797.85	806.77	781.03	770.77
EU-10	172.77	107.35	105.31	108.68	106.37	111.36	114.46	116.20	112.32	110.65
EU-2	112.47	71.62	54.34	59.04	63.17	62.07	54.30	61.17	61.03	60.46

Table 39N2O emissions from 4D Agricultural Soils

.3.4 Other source categories in the agricultural sector

No near-term data were identified which could be used to develop a real-time projection for the other source categories in the agricultural sector, or at least not for all parts necessary for the emission estimation. Therefore, simple approaches were chosen for all remaining agricultural source categories. Either a linear trend extrapolation was used if the past data showed a rather consistent linear trend. If the past trend was fluctuating, the emissions from the latest year were kept constant. The detailed methodologies used are documented in the tables in Annex I.

.4 Waste

.4.1 6.A Solid Waste Disposal

The most important source category in the waste sector is CH₄ emissions from source category 6.A. Solid Waste Disposal. For this source category, most Member States use higher tier methods, i.e. a first order decay approach that uses a number of activity data on certain types of waste deposited on landfills and a number of country-specific parameters. For the EU inventory 2011, among all 27 EU Member States Cyprus and Romania only still used Tier 1 methodologies to estimate emissions from this source category (EU NIR 2011). The first order decay approach is challenging for the proxy estimation because an estimation method would not only need to

use updated activity data, but would also need to mirror the chosen model approach for CH₄ emissions from landfills in each MS. The original idea in the feasibility study was the development of approximate first order decay models for each Member State based on submitted inventory data since 1990.⁴¹ Such a model with specific results for each Member State was already developed by the European Topic Centre on Resource and Waste Management; however results were checked for 2007 and were less accurate than the extrapolation approach used in 2007 because a number of parameters are harmonized in this model that reflect MS estimates in a less accurate way.

In the absence of a detailed approach reflecting the first order decay assumptions, a simple approach was used to estimate CH₄ emissions from Solid Waste Disposal on land. A linear extrapolation of the trend of previous years was used if the past data tended to show a consistent linear trend. If the past trend was fluctuating, the emissions from the latest year were kept constant. The detailed approach for each Member State is provided in Table 101.

.4.1.1 Results for 2010

GHG emissions from the Waste sector decreased by -2.5 Mt CO₂eq for the EU-15 and by -2.6 Mt CO₂eq for the EU-27 in 2010 compared to 2009. Table 40 indicates the sub-sector contribution to this trend in emissions.

	Change 2009/10					
Sector Waste	EU	-15	EU-27			
	Mt CO ₂ eq	%	Mt CO ₂ eq	%		
6 Waste	-2.5	-2.3%	-2.6	-1.8%		
6.A Solid Waste Disposal on Land	-2.2	-2.6%	-2.3	-2.1%		
6.B Waste-water Handling	-0.2	-0.8%	-0.2	-0.6%		
6.C Waste Incineration	-0.2	-5.5%	-0.2	-4.2%		
6.D Other	0.0	0.2%	0.0	0.1%		

 Table 40
 Change in GHG emissions from 2009 and 2010 in the Waste sector

Source: EEA's ETC ACM based on the 2011 EU greenhouse gas inventory to UNFCCC for 1990-2009 and early estimates for 2010

.4.2 Other categories in the waste sector

The other source categories in the Waste sector are not very significant for total GHG emissions in the EU. Total emissions from 6.B. Wastewater Handling were 0.55 % of EU-15 total emissions in 2009 and total emissions from 6.C Waste Incineration contributed to 0.09 % to total EU-15 emissions in that year.

Therefore, simple approaches were chosen for these source categories. Either a linear trend extrapolation was used if the past data tended to show a consistent linear trend. If the past trend

⁴¹ Matthes, F. C., Herold, A., Ziesing, H.J. 2007

was fluctuating, the emissions from the latest year were kept constant. This approach was used for CO₂ emissions from 6.A. Solid waste disposal on land, for N₂O and CH₄ emissions from 6.B. Wastewater handling and for CO₂, CH₄ and N₂O emissions from 6.C Waste incineration as well as for emissions from 6.D Other.

.5 Other source categories

For all other source categories, no 2010 activity data was available that could be combined with IEFs from GHG inventories. These categories were extrapolated from 2009 GHG inventories, either by trend extrapolation or by taking the constant values of 2009. Constant values were used when past trends were inconsistent and strongly fluctuating; trend extrapolation was used when historic time series showed good correlations with a linear trend.

For some source categories, updated data was only partly available, but the inventory estimation methodology was too complex to be replicated in an approximated way, e.g. for N₂O emissions from soils.

Annex 1 provides a detailed overview of methods and data sources used for each source category and Member State.

• References

- BP, 2011, BP Statistical Review of World Energy 2011 (http://www.bp.com/liveassets/bp internet/globalbp/globalbp uk english/reports and publications/statistical energy review 2011/STAGING/local assets/pdf/statistical review of world energy full report 2011.pdf) accessed 24 September 2011.
- DECC (Department of Energy and Climate Change), 2011a, 'UK climate change sustainable development indicator: 2010 greenhouse gas emissions, provisional figures and 2009 greenhouse gas emissions, final figures by fuel type and end-user' Statistical release, 31 Match 2011.(<u>http://www.decc.gov.uk/assets/decc/Statistics/climate_change/1515-statrelease-ghg-emissions-31032011.pdf)</u> accessed 6 October 2011.
- DECC (Department of Energy and Climate Change), 2011b; Digest of United Kingdom energy statistics (DUKES).
 (<u>http://www.decc.gov.uk/assets/decc/11/stats/publications/dukes/2307-dukes-2011-chapter-5-electricity.pdf</u>) accessed 6 October 2011.
- DEFRA (Department for Environment Food and Rural Affairs), 2011, 'Agriculture in the United Kingdom' (<u>http://www.defra.gov.uk/statistics/files/defra-stats-foodfarm-crosscutting-auk-auk2010-110525.pdf</u>) accessed 6 October 2011.
- EC, 1999, Council Directive 1999/31/EC of 26 April 1999 on the landfill of waste, OJ L 182, 16.7.1999.
- EEA, 2009, 'New estimates confirm the declining trend in EU greenhouse gas emissions' (http:// www.eea.europa.eu/highlights/new-estimates-confirm-the-declining-trend-in-eu-greenhouse-gas-emissions) accessed 24 September 2011.
- EC, 2011, European Commission Directorate-General for Energy 2011 quarterly report on European electricity markets (http://ec.europa.eu/ energy/observatory/electricity/doc/qreem_2010_ quarter3.pdf) accessed 2 October 2011.
- EEA, 2011a, 'EEA greenhouse gas data viewer' (http://dataservice.eea.europa.eu/PivotApp/pivot. aspx?pivotid=475) accessed 24 September 2011.
- EEA, 2011b, Annual European Union greenhouse gas inventory 1990–2009 and inventory report 2011, EEA Technical Report No 2/2011 (http:// www.eea.europa.eu/publications/european-union-greenhouse-gas-inventory-2011) accessed 24 September 2011.
- EEA, 2011c, 'European Union Emissions Trading Scheme (EU ETS) data viewer' (http://dataservice. eea.europa.eu/PivotApp/pivot.aspx?pivotid=473) accessed 24 September 2011.
- Eurostat, 2011, 'Energy Database' (http://epp. eurostat.ec.europa.eu/portal/page/portal/energy/data/ database) accessed 24 September 2011.
- Eurostat data:

- Eurostat Monthly Oil and Gas Questionnaires and Monthly Coal Questionnaires (2008, 2009 and 2010 submissions)
- Eurostat monthly data on crude oil production (indicator code 100100, product code 3100);
- Eurostat monthly total consumption data for natural gas (indicator code 100900, product code 4100);
- Eurostat production data for natural gas (indicator code 100100, product code 4100);
- Eurostat annual data for the final energy consumption of motor spirit, automotive diesel oil and kerosene/jet fuels;
- Eurostat monthly data on production of nuclear energy (indicator code 100100, product code 5100)
- Eurostat monthly data for the internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels;
- Monthly production data for crude steel production and blast furnace iron production of the International Iron and Steel Institute (IISI);
- Eurostat annual statistics on livestock population for dairy cattle, non-dairy cattle, swine, sheep, goats.Eurostat annual road freight transport by typ
- IEA/OECD, 2011a, *Renewables Information 2011*, International Energy Agency and Organisation for Economic Co-operation and Development.
- IEA/OECD, 2011b, *End-use energy prices database*, 2011, International Energy Agency and Organisation for Economic Co-operation and Development.
- IPCC, 1996, Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual, (<u>http://www.ipcc-nggip.iges.or.jp/public/gl/invs1.html</u>) accessed 6 October 2011.
- ISSB Limited, 2011:, UK Crude Steel Production 1990-2010, (<u>http://www.issb.co.uk/uk.html</u>) accessed 6 October 2011.
- Matthes, F. C., Herold, A., Ziesing, H.J., 2007, 'A 'Proxy-Inventory' for GHG Emissions from the EU-27 Member States' Feasibility study, ETC/ACC Technical Paper No 2007/3.
- Ministerio de Medio Ambiente y Medio Rural y Marino, 2011, 'Avance de la estimación de emisiones GEI 2010' (<u>http://www.marm.es/es/calidad-y-evaluacion-</u> <u>ambiental/temas/sistema-espanol-de-inventario-sei-</u> /<u>Avance Inventario Emisiones GEI 2010 tcm7-162704.pdf</u>) accessed 6 October 2011.
- National Institute of Statistics Bulgaria, 2011, Press release No. 135 of 30 June 2011: Animal production in 2010, (<u>http://www.insse.ro/cms/files/statistici/comunicate/com_trim/prod_anim10e.pdf</u>) accessed 6 October 2011.

- Statistics Estonia, 2011, 2010 was successful for Estonian industry. News release, 31.01.2011. (http://www.stat.ee/49340)) accessed 6 October 2011.
- Statistics Finland, 2011, Energy supply, consumption and prices. 2010, 4th quarter, (<u>http://www.stat.fi/til/ehkh/2010/04/ehkh 2010 04 2011-03-29 tie 001 en.html</u>) accessed 6 October 2011.
- SverigesOfficiellaStatistik, 2011, Number of cattle 2008, 2009 and 2010,(<u>http://www.jordbruksverket.se/webdav/files/SJV/Amnesomraden/Statistik%2C%20fak</u> ta/Husdjur/JO23/JO23SM1101/JO23SM1101 inEnglish.htm) accessed 6 October 2011.
- Umweltbundesamt, 2011, ,'Treibhausgase deutlich unter dem Limit', Presseinformation Nr. 20/2011, 12.04.2011.
- UNFCCC, 2011, 'Kyoto Protocol base year data', (http://unfccc.int/ghg_data/kp_data_unfccc/base_ year_data/items/4354.php) accessed 24 September 2011.
- World Steel Association, 2011, Crude steel production and blast furnace iron production by month,

(http://www.worldsteel.org/?action=stats&type=steel&period=latest&month=13&year=2010) accessed 6 October 2011.

- Ziesing, H.-J., 2011, Kurz-Information Gute Konjunktur und kalte Witterung treiben CO₂-Emissionen im Jahr 2010 wieder in die Höhe, Berlin, 22.03.2011.
- National preliminary energy balance data or energy statistics:
 - Bulgaria, 2011, Monthly statistics for liquid, solid and gaseous fuels, (<u>http://www.nsi.bg/otrasalen.php?otr=37</u>) accessed 6 October 2011.
 - Czech Republic, 2011 Primary energy sources, (<u>http://www.mpo.cz/dokument87231.html</u>) accessed 6 October 2011.
 - Denmark, 2011, Monthly energy statistics, (<u>http://www.ens.dk/en-</u> <u>US/Info/FactsAndFigures/Energy_statistics_and_indicators/Monthly%20Statistic/Sider</u> /<u>Forside.aspx</u>) accessed 6 October 2011.
 - Estonia: Energy balances derived from (<u>http://pub.stat.ee/px-web.2001/I_Databas/Economy/07Energy/02Energy_consumption_and_production/01</u> <u>Annual_statistics/01Annual_statistics.asp</u>) accessed 6 October 2011.
 - Finland 2011, Energy consumption data, (<u>http://www.stat.fi/til/ehkh/2010/04/ehkh_2010_04_2011-03-29_tie_001_en.html)</u> accessed 6 October 2011.
 - France, 2011, Monthly energy statistics gas, oil and coal, (<u>http://developpement-durable.bsocom.fr/statistiques/ReportFolders/reportFolders.aspx</u>) accessed 6 October 2011.
 - Germany, 2011, Quarterly energy consumption data, (<u>http://www.ag-energiebilanzen.de/viewpage.php?idpage=62</u>) and

Official Petroleum Data for Germany, (http://www.mwv.de/index.php/daten/statistikeninfoportal) accessed 6 October 2011.

- Ireland, 2011, Energy balances, (<u>http://www.seai.ie/Publications/Statistics_Publications/Energy_Balance/)</u> accessed 6 October 2011.
- Latvia, 2011, Monthly data on natural gas, solid fuels and oil products, (<u>http://data.csb.gov.lv/DATABASEEN/vide/Short%20term%20statistical%20data/Energy.asp</u>) accessed 6 October 2011.
- Lithuania, 2011, Energy statistics, (<u>http://db1.stat.gov.lt/statbank/default.asp?w=1280</u>) accessed 6 October 2011.
- Netherlands, 2011, Annual energy balances, (<u>http://statline.cbs.nl/StatWeb/dome/?LA=EN)</u> accessed 6 October 2011.
- Slovenia 2011, Annual balance of liquid, solid and gaseous fuels, (<u>http://pxweb.stat.si/pxweb/Database/Environment/18_energy/04_18180_fuels/04_181</u>
 <u>80_fuels.asp</u>) accessed 6 October 2011.
- Sweden, 2011, Quarterly energy balances, (<u>http://www.ssd.scb.se/databaser/makro/MainTable.asp?yp=tansss&xu=C9233001&o</u> <u>mradekod=EN&omradetext=Energi&lang=1</u>) and Monthly data on liquid fuel use, (<u>http://www.ssd.scb.se/Databaser/makro/MainTable.asp?yp=bergman&xu=scb&omradetext=Energi&lang=2&langdb=1</u>) accessed 6 October 2011.
- United Kingdom, 2011, Energy trends. Quarterly data, (<u>http://www.decc.gov.uk/en/content/cms/statistics/energy_stats/source/total/total.aspx</u>) accessed 6 October 2011.

Annex 1 – Detailed overview of methods and data sources used

Source C	Source Category 1A Fuel Combustion (Sectoral Approach)							
Gas	CO2	· · · · ·						
Member State	Projection Approach	Data Sources	Notes					
AT	Emission differentials from other sources	Summation of Proxy CRF 1A1, 1A2, 1A3, 1A4, 1A5	1A4 & 1A5 from previous year					
BE	Emissions calculation based on activity data	BP Statistical Review of World Energy, consumption of oil, gas and coal, June 2011	trend to consumption data of previous year					
BG	Emissions calculation based on activity data	Early national energy statistics (monthly data)	trend to consumption data of previous year					
CY	Emissions calculation based on activity data	Eurostat data from Monthly Oil and Gas Questionnaires and from Eurostat database for solid fuels	Activity data for single fuel categories					
CZ	Emissions calculation based on activity data	Early national energy statistics (annual data)	trend to consumption data of previous year					
DE	Emissions calculation based on activity data	BP Statistical Review of World Energy, consumption of oil, gas and coal, June 2011	trend to consumption data of previous year					
DK	Emissions calculation based on activity data	Early national energy statistics (monthly data)	trend to consumption data of previous year					
EE	Emissions calculation based on activity data	Early national energy statistics (monthly data)	trend to consumption data of previous year					
ES	Emissions calculation based on activity data	BP Statistical Review of World Energy, consumption of oil, gas and coal, June 2011	trend to consumption data of previous year					
FI	Emissions calculation based on activity data	Early national energy statistics (annual data)	trend to consumption data of previous year					
FR	Emissions calculation based on activity data	Early national energy statistics (monthly data)	trend to consumption data of previous year					
UK	Emissions calculation based on activity data	BP Statistical Review of World Energy, consumption of oil, gas and coal, June 2011	trend to consumption data of previous year					
GR	Emissions calculation based on activity data	BP Statistical Review of World Energy, consumption of oil, gas and coal, June 2011	trend to consumption data of previous year					
HU	Emissions calculation based on activity data	BP Statistical Review of World Energy, consumption of oil, gas and coal, June 2011	trend to consumption data of previous year					
IE	Emissions calculation based on activity data	nissions calculation based on activity data Early national energy statistics (energy balance)						
п	Emission differentials from other sources	Summation of Proxy CRF 1A1, 1A2, 1A3, 1A4, 1A5	1A4 & 1A5 from previous year					
LT	Emissions calculation based on activity data	hissions calculation based on activity data Early national energy statistics (monthly data)						
LU	Emissions calculation based on activity data	Eurostat data from Monthly Oil and Gas Questionnaires and from Eurostat database for solid fuels	trend to consumption data of previous year					
LV	Emissions calculation based on activity data	Early national energy statistics (monthly data)	trend to consumption data of previous year					
МТ	Emission differentials from other sources	Summation of Proxy CRF 1A1, 1A2, 1A3, 1A4, 1A5	1A4 & 1A5 from previous year					
NL	Emissions calculation based on activity data	Early national energy statistics (energy balance)	trend to consumption data of previous year					
PL	Emissions calculation based on activity data	BP Statistical Review of World Energy, consumption of oil, gas and coal, June 2011	trend to consumption data of previous year					
PT	Emissions calculation based on activity data	BP Statistical Review of World Energy, consumption of oil, gas and coal, June 2011	trend to consumption data of previous year					
RO	Emissions calculation based on activity data	BP Statistical Review of World Energy, consumption of oil, gas and coal, June 2011	trend to consumption data of previous year					
SE	Emissions calculation based on activity data	Early national energy statistics (quarterly data)	trend to consumption data of previous year					
SI	Emissions calculation based on activity data	Early national energy statistics (annual data)	trend to consumption data of previous year					
SK	Emissions calculation based on activity data	BP Statistical Review of World Energy, consumption of oil, gas and coal, June 2011	trend to consumption data of previous year					

Table 41Methods and data used for CO2 emissions from 1A Fuel combustion

Source Category		1A	Fuel Com	oustion		
Gas	Gas		N2O			
Member		Pro	jection Approact	n		Data Sources
State			<i>·</i> · · ·			
AT	Emission trends	(dynamics)	calculated for CO2	2 in sam	e source category	CO2 projection in this report
BE	Emission trends	(dynamics)	calculated for CO2	2 in sam	e source category	CO2 projection in this report
BG	Emission trends	(dynamics)	calculated for CO2	2 in sam	e source category	CO2 projection in this report
CY	Emission trends	(dynamics)	calculated for CO2	2 in sam	e source category	CO2 projection in this report
CZ	Emission trends	(dynamics)	calculated for CO2	2 in sam	e source category	CO2 projection in this report
DE	Emission trends	(dynamics)	calculated for CO2	2 in sam	e source category	CO2 projection in this report
DK	Emission trends	(dynamics)	calculated for CO2	2 in sam	e source category	CO2 projection in this report
EE	Emission trends	(dynamics)	calculated for CO2	2 in sam	e source category	CO2 projection in this report
ES	Emission trends	(dynamics)	calculated for CO2	2 in sam	e source category	CO2 projection in this report
FI	Emission trends	(dynamics)	calculated for CO2	2 in same	e source category	CO2 projection in this report
FR	Emission trends	(dynamics)	calculated for CO2	2 in same	e source category	CO2 projection in this report
UK	Emission trends	(dynamics)	calculated for CO2	2 in same	e source category	CO2 projection in this report
GR	Emission trends	(dynamics)	calculated for CO2	2 in same	e source category	CO2 projection in this report
HU	Emission trends	(dynamics)	calculated for CO2	2 in same	e source category	CO2 projection in this report
IE	Emission trends	(dynamics)	calculated for CO2	2 in same	e source category	CO2 projection in this report
π	Emission trends	(dynamics)	calculated for CO2	2 in same	e source category	CO2 projection in this report
LT	Emission trends	(dynamics)	calculated for CO2	2 in same	e source category	CO2 projection in this report
LU	Emission trends	(dynamics)	calculated for CO2	2 in sam	e source category	CO2 projection in this report
LV	Emission trends	(dynamics)	calculated for CO2	2 in same	e source category	CO2 projection in this report
МТ	Emission trends	(dynamics)	calculated for CO2	2 in same	e source category	CO2 projection in this report
NL	Emission trends	(dynamics)	calculated for CO2	2 in sam	e source category	CO2 projection in this report
PL	Emission trends	(dynamics)	calculated for CO2	2 in sam	e source category	CO2 projection in this report
PT	Emission trends	(dynamics)	calculated for CO2	2 in same	e source category	CO2 projection in this report
RO	Emission trends	(dynamics)	calculated for CO2	2 in sam	e source category	CO2 projection in this report
SE	Emission trends	(dynamics)	calculated for CO2	2 in same	e source category	CO2 projection in this report
SI	Emission trends	(dynamics)	calculated for CO2	2 in same	e source category	CO2 projection in this report
SK	Emission trends	(dynamics)	calculated for CO2	2 in sam	e source category	CO2 projection in this report

Table 42Methods and data used for CH4 and N2O emission	ns from 1A Fuel combustion
--	----------------------------

Source Cate	egory 1A1		Energy Industries				
Gas	CO2						
Member	Project	ion App	broach	Data Sources			
	Total from other so		ategories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c			
BE	Total from other so		ategories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c			
BG	Total from other so		ategories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c			
	Total from other so		ategories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c			
	Total from other so		ategories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c			
	Total from other so		ategories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c			
	Total from other so		ategories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c			
EE	Total from other so		ategories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c			
ES	Total from other so		ategories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c			
FI	Total from other so		ategories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c			
EP	Total from other so		ategories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c			
	Total from other so		ategories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c			
GR	Total from other so		ategories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c			
	Total from other so		ategories	Provide the source categories 1A1a, 1A1b and 1A1c			
IF	Total from other so		ategories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c			
	Total from other so		ategories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c			
	Total from other so		ategories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c			
	Total from other so		ategories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c			
	Total from other so		ategories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c			
MT	Total from other so		ategories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c			
NI	Total from other so	ource ca	ategories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c			
PI	Total from other source categories		ategories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c			
PT	Total from other source categories			Proxy-inventory source categories 1A1a, 1A1b and 1A1c			
RO	Total from other so	ource ca	ategories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c			
SE	Total from other so	ource ca	ategories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c			
SI	Total from other so	ource ca	ategories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c			
SK	Total from other so	ource ca	ategories	Proxy-inventory source categories 1A1a, 1A1b and 1A1c			

Table 43Methods and data used for CO2, CH4 and N2O emissions for 1A1 Energy industries

Source Category		1A1a	a. Public	Electricity and Heat Production			
Gas		CO2					
Member							
State	Proje	ction Approach	1	Data Sources	Notes		
AT	Emission trer sources	nds (dynamics) f	rom other	CITL data (operator holding accounts) 2008-20012	identification of power sector by Öko-Institut's analysis		
BE	Emission trer sources	nds (dynamics) f	rom other	CITL data (operator holding accounts) 2008-20012	identification of power sector by Öko-Institut's analysis		
BG	Emission trer sources	nds (dynamics) f	rom other	CITL data (operator holding accounts) 2008-20012	identification of power sector by Öko-Institut's analysis		
CY	Data from pre	evious years		UNFCCC 2011 submission			
CZ	Emission trer sources	nds (dynamics) f	rom other	CITL data (operator holding accounts) 2008-20012	identification of power sector by Öko-Institut's analysis		
DE	Emission trer sources	nds (dynamics) f	rom other	CITL data (operator holding accounts) 2008-20012	identification of power sector by Öko-Institut's analysis		
DK	Emission trer sources	nds (dynamics) f	rom other	CITL data (operator holding accounts) 2008-20012	identification of power sector by Öko-Institut's analysis		
EE	Emission trer sources	nds (dynamics) f	rom other	CITL data (operator holding accounts) 2008-20012	identification of power sector by Öko-Institut's analysis		
ES	Emission trer sources	nds (dynamics) f	rom other	CITL data (operator holding accounts) 2008-20012	identification of power sector by Öko-Institut's analysis		
FI	Emission trer sources	nds (dynamics) f	rom other	CITL data (operator holding accounts) 2008-20012	identification of power sector by Öko-Institut's analysis		
FR	Emission trer sources	nds (dynamics) f	rom other	CITL data (operator holding accounts) 2008-20012	identification of power sector by Öko-Institut's analysis		
UK	Emission trer sources	nds (dynamics) f	rom other	CITL data (operator holding accounts) 2008-20012	identification of power sector by Öko-Institut's analysis		
GR	Emission trer sources	nds (dynamics) f	rom other	CITL data (operator holding accounts) 2008-20012	identification of power sector by Öko-Institut's analysis		
HU	Emission trer sources	nds (dynamics) f	rom other	CITL data (operator holding accounts) 2008-20012	identification of power sector by Öko-Institut's analysis		
IE	Emission trer sources	nds (dynamics) f	rom other	CITL data (operator holding accounts) 2008-20012	identification of power sector by Öko-Institut's analysis		
IT	Emission trer sources	nds (dynamics) f	rom other	CITL data (operator holding accounts) 2008-20012	identification of power sector by Öko-Institut's analysis		
LT	Emission trer sources	nds (dynamics) f	rom other	CITL data (operator holding accounts) 2008-20012	identification of power sector by Öko-Institut's analysis		
LU	Emission trer sources	nds (dynamics) f	rom other	CITL data (operator holding accounts) 2008-20012	identification of power sector by Öko-Institut's analysis		
LV	Emission trer sources	nds (dynamics) f	rom other	CITL data (operator holding accounts) 2008-20012	identification of power sector by Öko-Institut's analysis		
MT	Emission trer sources	nds (dynamics) f	rom other	CITL data (operator holding accounts) 2008-20012	identification of power sector by Öko-Institut's analysis		
NL	Emission trer sources	nds (dynamics) f	rom other	CITL data (operator holding accounts) 2008-20012	identification of power sector by Öko-Institut's analysis		
PL	Emission trer sources	nds (dynamics) f	rom other	CITL data (operator holding accounts) 2008-20012	identification of power sector by Öko-Institut's analysis		
PT	Emission trends (dynamics) from other sources		rom other	CITL data (operator holding accounts) 2008-20012	identification of power sector by Öko-Institut's analysis		
RO	Emission trends (dynamics) from other sources		rom other	CITL data (operator holding accounts) 2008-20012	identification of power sector by Öko-Institut's analysis		
SE	Emission trends (dynamics) from other sources			CITL data (operator holding accounts) 2008-20012	identification of power sector by Öko-Institut		
SI	Emission trer sources	nds (dynamics) f	rom other	CITL data (operator holding accounts) 2008-20012	identification of power sector by Öko-Institut's analysis		
SK	Emission trer sources	nds (dynamics) f	rom other	CITL data (operator holding accounts) 2008-20012	identification of power sector by Öko-Institut's analysis		

Table 44Methods and data used for CO2 emissions from 1A1a Public electricity and heat production

Source Category 1A1a a. Public Electricity and Heat Production					
Gas	CH4				
Member	Projection Approach	Data Sources	Notes		
State	,				
AT	Data from previous years	UNFCCC 2011 submission	Average 2007-2009		
BE	Data from previous years	UNFCCC 2011 submission	Average 2007-2009		
BG	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2			
CY	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2			
CZ	Data from previous years	UNFCCC 2011 submission	Average 2007-2009		
DE	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2			
DK	Data from previous years	UNFCCC 2011 submission	Average 2007-2009		
EE	Data from previous years	UNFCCC 2011 submission	Average 2007-2009		
ES	Data from previous years	UNFCCC 2011 submission	Average 2007-2009		
FI	Data from previous years	UNFCCC 2011 submission	Average 2007-2009		
FR	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2			
UK	Data from previous years	UNFCCC 2011 submission	Average 2007-2009		
GR	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2			
HU	Data from previous years	UNFCCC 2011 submission	Average 2007-2009		
IE	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2			
IT	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2			
LT	Data from previous years	UNFCCC 2011 submission	Average 2007-2009		
LU	Data from previous years	UNFCCC 2011 submission	Average 2007-2009		
LV	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2			
MT	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2			
NL	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2			
PL	Data from previous years	UNFCCC 2011 submission			
PT	Data from previous years	UNFCCC 2011 submission	Average 2007-2009		
RO	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2			
SE	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2			
SI	Data from previous years	UNFCCC 2011 submission	Average 2007-2009		
SK	Data from previous years	UNFCCC 2011 submission	Average 2007-2009		

Table 45Methods and data used for CH4 emissions from 1A1a Public electricity and heat production

Source Ca	tegory 1A1a a. Public Electricity ar	nd Heat Production				
Gas	N2O					
Member	Projection Approach	Data Sources	Notes			
State						
AT	Data from previous years	UNFCCC 2011 submission	Average 2007-2009			
BE	Data from previous years	UNFCCC 2011 submission	Average 2007-2009			
BG	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2				
CY	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2				
CZ	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2				
DE	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2				
DK	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2				
EE	Data from previous years	UNFCCC 2011 submission	Average 2007-2009			
ES	Data from previous years	UNFCCC 2011 submission	Average 2007-2009			
FI	Data from previous years	UNFCCC 2011 submission	Average 2007-2009			
FR	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2				
UK	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2				
GR	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2				
HU	Data from previous years	UNFCCC 2011 submission	Average 2007-2009			
IE	Data from previous years	UNFCCC 2011 submission	Average 2007-2009			
IT	Data from previous years	UNFCCC 2011 submission	Average 2007-2009			
LT	Data from previous years	UNFCCC 2011 submission	Average 2007-2009			
LU	Data from previous years	UNFCCC 2011 submission	Average 2007-2009			
LV	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2				
MT	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2				
NL	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2				
PL	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2				
PT	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2				
RO	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2				
SE	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2				
SI	Emission trends (dynamics) from other sources	Proxy-inventory source categories 1A1a for CO2				
SK	Data from previous years	UNFCCC 2011 submission	Average 2007-2009			

Table 46Methods and data used for N2O emissions from 1A1a Public electricity and heat production

Source Ca	ategory 1A1b b. Petroleum Refining		
Gas	CO2		
Member	Projection Approach	Data Sources	Notos
State		Data Sources	Notes
AT	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-20012	Main activity Code 2
BE	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-20012	Main activity Code 2
BG	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
CY	Data from previous years	UNFCCC 2011 submission	
CZ	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-20012	Main activity Code 2
DE	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-20012	Main activity Code 2
DK	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-20012	Main activity Code 2
EE	Data from previous years	UNFCCC 2011 submission	
ES	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-20012	Main activity Code 2
FI	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-20012	Main activity Code 2
FR	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-20012	Main activity Code 2
UK	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-20012	Main activity Code 2
GR	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-20012	Main activity Code 2
HU	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-20012	Main activity Code 2
IE	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-20012	Main activity Code 2
IT	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-20012	Main activity Code 2
LT	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
LU	Data from previous years	UNFCCC 2011 submission	
LV	Data from previous years	UNFCCC 2011 submission	
MT	Data from previous years	UNFCCC 2011 submission	
NL	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-20012	Main activity Code 2
PL	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-20012	Main activity Code 2
PT	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
RO	Data from previous years	UNFCCC 2011 submission	
SE	Emission trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-20012	Main activity Code 2
SI	Data from previous years	UNFCCC 2011 submission	
SK	Data from previous years	UNFCCC 2011 submission	Average 2007-2009

Table 47Methods and data used for CO2 emissions from 1A1b Petroleum refining

Source Ca	tegory 1A1b	b. Petroleum Refining			
Gas	CH4				
Member	Projection A	nnroach	Data Sources		
State		ppiouon			
AT	Data from previous years		UNFCCC 2011 submission		
BE	Data from previous years		UNFCCC 2011 submission		
BG	Emission trends (dynamics)	from other sources	Proxy-inventory source categories 1A1b for CO2		
CY	Data from previous years		UNFCCC 2011 submission		
CZ	Emission trends (dynamics)	from other sources	Proxy-inventory source categories 1A1b for CO2		
DE	Emission trends (dynamics)	from other sources	Proxy-inventory source categories 1A1b for CO2		
DK	Data from previous years		UNFCCC 2011 submission		
EE	Data from previous years		UNFCCC 2011 submission		
ES	Emission trends (dynamics)	from other sources	Proxy-inventory source categories 1A1b for CO2		
FI	Emission trends (dynamics)	from other sources	Proxy-inventory source categories 1A1b for CO2		
FR	Emission trends (dynamics)	from other sources	Proxy-inventory source categories 1A1b for CO2		
UK	Emission trends (dynamics)	from other sources	Proxy-inventory source categories 1A1b for CO2		
GR	Emission trends (dynamics)	from other sources	Proxy-inventory source categories 1A1b for CO2		
HU	Emission trends (dynamics)	from other sources	Proxy-inventory source categories 1A1b for CO2		
IE	Emission trends (dynamics)	from other sources	Proxy-inventory source categories 1A1b for CO2		
IT	Emission trends (dynamics)	from other sources	Proxy-inventory source categories 1A1b for CO2		
LT	Emission trends (dynamics)	from other sources	Proxy-inventory source categories 1A1b for CO2		
LU	Data from previous years		UNFCCC 2011 submission		
LV	Data from previous years		UNFCCC 2011 submission		
MT	Data from previous years		UNFCCC 2011 submission		
NL	Data from previous years		UNFCCC 2011 submission		
PL	Emission trends (dynamics)	from other sources	Proxy-inventory source categories 1A1b for CO2		
PT	Emission trends (dynamics)	from other sources	Proxy-inventory source categories 1A1b for CO2		
RO	Data from previous years		UNFCCC 2011 submission		
SE	Emission trends (dynamics)	from other sources	Proxy-inventory source categories 1A1b for CO2		
SI	Data from previous years		UNFCCC 2011 submission		
SK	Emission trends (dynamics)	from other sources	Proxy-inventory source categories 1A1b for CO2		

Table 48Methods and data used for CH4 emissions from 1A1b Petroleum refining

Source Category		1A1b	b. Petroleum Refining				
Gas	N2O						
Member	Projection Appr		n Annroach	Data Sources			
State		Trojection		Data Oburces			
AT	Data from pre	evious years	6	UNFCCC 2011 submission			
BE	Data from pre	evious years	3	UNFCCC 2011 submission			
BG	Data from pre	vious years	5	UNFCCC 2011 submission			
CY	Data from pre	evious years	3	UNFCCC 2011 submission			
CZ	Emission tren	ds (dynami	ics) from other sources	Proxy-inventory source categories 1A1b for CO2			
DE	Emission tren	ds (dynami	ics) from other sources	Proxy-inventory source categories 1A1b for CO2			
DK	Emission tren	ds (dynami	ics) from other sources	Proxy-inventory source categories 1A1b for CO2			
EE	Data from pre	vious years	6	UNFCCC 2011 submission			
ES	Emission tren	ds (dynami	ics) from other sources	Proxy-inventory source categories 1A1b for CO2			
FI	Emission tren	ds (dynami	ics) from other sources	Proxy-inventory source categories 1A1b for CO2			
FR	Emission tren	ds (dynami	ics) from other sources	Proxy-inventory source categories 1A1b for CO2			
UK	Emission tren	ds (dynami	ics) from other sources	Proxy-inventory source categories 1A1b for CO2			
GR	Emission tren	ds (dynami	ics) from other sources	Proxy-inventory source categories 1A1b for CO2			
HU	Emission tren	ds (dynami	ics) from other sources	Proxy-inventory source categories 1A1b for CO2			
IE	Emission tren	ds (dynami	ics) from other sources	Proxy-inventory source categories 1A1b for CO2			
IT	Emission tren	ds (dynami	ics) from other sources	Proxy-inventory source categories 1A1b for CO2			
LT	Emission tren	ds (dynami	ics) from other sources	Proxy-inventory source categories 1A1b for CO2			
LU	Data from pre	evious years	3	UNFCCC 2011 submission			
LV	Data from pre	vious years	5	UNFCCC 2011 submission			
MT	Data from pre	vious years	5	UNFCCC 2011 submission			
NL	Data from pre	vious years	5	UNFCCC 2011 submission			
PL	Emission tren	ds (dynami	ics) from other sources	Proxy-inventory source categories 1A1b for CO2			
PT	Data from pre	vious years	5	UNFCCC 2011 submission			
RO	Data from pre	evious years	6	UNFCCC 2011 submission			
SE	Emission trends (dynamics) from other sources		ics) from other sources	Proxy-inventory source categories 1A1b for CO2			
SI	Data from pre	evious years	6	UNFCCC 2011 submission			
SK	Data from pre	evious years	6	UNFCCC 2011 submission			

Table 49Methods and data used for N2O emissions from 1A1b Petroleum refining

Source Ca	tegory 1A1c c. Manut	facture of Solid Fuels and Other Energ
Gas	CO2	
Member State	Projection Approach	Data Sources
AT	Data from previous years	UNFCCC 2011 submission
BE	Data from previous years	UNFCCC 2011 submission
BG	Data from previous years	UNFCCC 2011 submission
CY	Data from previous years	UNFCCC 2011 submission
CZ	Data from previous years	UNFCCC 2011 submission
DE	Data from previous years	UNFCCC 2011 submission
DK	Data from previous years	UNFCCC 2011 submission
EE	Data from previous years	UNFCCC 2011 submission
ES	Data from previous years	UNFCCC 2011 submission
FI	Data from previous years	UNFCCC 2011 submission
FR	Data from previous years	UNFCCC 2011 submission
UK	Data from previous years	UNFCCC 2011 submission
GR	Data from previous years	UNFCCC 2011 submission
HU	Data from previous years	UNFCCC 2011 submission
IE	Data from previous years	UNFCCC 2011 submission
IT	Data from previous years	UNFCCC 2011 submission
LT	Data from previous years	UNFCCC 2011 submission
LU	Data from previous years	UNFCCC 2011 submission
LV	Data from previous years	UNFCCC 2011 submission
MT	Data from previous years	UNFCCC 2011 submission
NL	Data from previous years	UNFCCC 2011 submission
PL	Data from previous years	UNFCCC 2011 submission
PT	Data from previous years	UNFCCC 2011 submission
RO	Data from previous years	UNFCCC 2011 submission
SE	Data from previous years	UNFCCC 2011 submission
SI	Data from previous years	UNFCCC 2011 submission
SK	Data from previous years	UNFCCC 2011 submission

Table 50Methods and data sources used for CO2, CH4 and N2O emissions from 1A1c Manufacture of
solid fuels and other energy industries

Source C	ategory 1A2	2. Manufacturing Indu	stries and Construction	
Member	Projection Ar	proach	Data Sources	Notes
State		prodon		10105
AT	Emission trends (dynamics)	from other sources	CITL data (operator holding accounts) 2008- 20012	Main activity codes 1 (w/o power), 3, 4, 5, 6, 7, 8, 9, 99
BE	Emission trends (dynamics)	from other sources	CITL data (operator holding accounts) 2008- 20012	Main activity codes 1 (w/o power), 3, 4, 5, 6, 7, 8, 9, 99
BG	Emission trends (dynamics)	from other sources	CITL data (operator holding accounts) 2008- 20012	Main activity codes 1 (w/o power), 3, 4, 5, 6, 7, 8, 9, 99
СҮ	Data from previous years		UNFCCC 2011 submission	
CZ	Emission trends (dynamics)	from other sources	CITL data (operator holding accounts) 2008- 20012	Main activity codes 1 (w/o power), 3, 4, 5, 6, 7, 8, 9, 99
DE	Emission trends (dynamics)	from other sources	CITL data (operator holding accounts) 2008- 20012	Main activity codes 1 (w/o power), 3, 4, 5, 6, 7, 8, 9, 99
DK	Emission trends (dynamics)	from other sources	CITL data (operator holding accounts) 2008- 20012	Main activity codes 1 (w/o power), 3, 4, 5, 6, 7, 8, 9, 99
EE	Emission trends (dynamics)	from other sources	CITL data (operator holding accounts) 2008- 20012	Main activity codes 1 (w/o power), 3, 4, 5, 6, 7, 8, 9, 99
ES	Emission trends (dynamics)	from other sources	CITL data (operator holding accounts) 2008- 20012	Main activity codes 1 (w/o power), 3, 4, 5, 6, 7, 8, 9, 99
FI	Emission trends (dynamics)	from other sources	CITL data (operator holding accounts) 2008- 20012	Main activity codes 1 (w/o power), 3, 4, 5, 6, 7, 8, 9, 99
FR	Emission trends (dynamics)	from other sources	CITL data (operator holding accounts) 2008- 20012	Main activity codes 1 (w/o power), 3, 4, 5, 6, 7, 8, 9, 99
UK	Emission trends (dynamics)	from other sources	CITL data (operator holding accounts) 2008- 20012	Main activity codes 1 (w/o power), 3, 4, 5, 6, 7, 8, 9, 99
GR	Emission trends (dynamics)	from other sources	CITL data (operator holding accounts) 2008- 20012	Main activity codes 1 (w/o power), 3, 4, 5, 6, 7, 8, 9, 99
HU	Emission trends (dynamics)	from other sources	CITL data (operator holding accounts) 2008- 20012	Main activity codes 1 (w/o power), 3, 4, 5, 6, 7, 8, 9, 99
IE	Emission trends (dynamics)	from other sources	CITL data (operator holding accounts) 2008- 20012	Main activity codes 1 (w/o power), 3, 4, 5, 6, 7, 8, 9, 99
п	Emission trends (dynamics)	from other sources	CITL data (operator holding accounts) 2008- 20012	Main activity codes 1 (w/o power), 3, 4, 5, 6, 7, 8, 9, 99
LT	Emission trends (dynamics)	from other sources	CITL data (operator holding accounts) 2008- 20012	Main activity codes 1 (w/o power), 3, 4, 5, 6, 7, 8, 9, 99
LU	Emission trends (dynamics)	from other sources	CITL data (operator holding accounts) 2008- 20012	Main activity codes 1 (w/o power), 3, 4, 5, 6, 7, 8, 9, 99
LV	Emission trends (dynamics)	from other sources	CITL data (operator holding accounts) 2008- 20012	Main activity codes 1 (w/o power), 3, 4, 5, 6, 7, 8, 9, 99
MT	Data from previous years		UNFCCC 2011 submission	
NL	Emission trends (dynamics)	from other sources	CITL data (operator holding accounts) 2008- 20012	Main activity codes 1 (w/o power), 3, 4, 5, 6, 7, 8, 9, 99
PL	Emission trends (dynamics)	from other sources	CITL data (operator holding accounts) 2008- 20012	Main activity codes 1 (w/o power), 3, 4, 5, 6, 7, 8, 9, 99
PT	Emission trends (dynamics)	from other sources	CITL data (operator holding accounts) 2008- 20012	Main activity codes 1 (w/o power), 3, 4, 5, 6, 7, 8, 9, 99
RO	Emission trends (dynamics) from other sources		CITL data (operator holding accounts) 2008- 20012	Main activity codes 1 (w/o power), 3, 4, 5, 6, 7, 8, 9, 99
SE	Emission trends (dynamics)	from other sources	CITL data (operator holding accounts) 2008- 20012	Main activity codes 1 (w/o power), 3, 4, 5, 6, 7, 8, 9, 99
SI	Emission trends (dynamics)	from other sources	CITL data (operator holding accounts) 2008- 20012	Main activity codes 1 (w/o power), 3, 4, 5, 6, 7, 8, 9, 99
SK	Emission trends (dynamics)	from other sources	CITL data (operator holding accounts) 2008- 20012	Main activity codes 1 (w/o power), 3, 4, 5, 6, 7, 8, 9, 99

Table 51	Methods and	data use	d for	CO_2	emissions	from	1A2	Manufacturing	industries	and	соп-
	struction										

Source Ca	Source Category 1A2 2. Manufacturing Industries and Construction							
Gas	Gas CH4							
Member	Projection Approach	Data Sources	Notes					
State								
AT	Data from previous years	UNFCCC 2011 submission	Average 2007-2009					
BE	Data from previous years	UNFCCC 2011 submission	Average 2007-2009					
BG	Data from previous years	UNFCCC 2011 submission	Average 2007-2009					
CY	Data from previous years	UNFCCC 2011 submission	Average 2007-2009					
CZ	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2						
DE	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2						
DK	Data from previous years	UNFCCC 2011 submission	Average 2007-2009					
EE	Data from previous years	UNFCCC 2011 submission	Average 2007-2009					
ES	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2						
FI	Data from previous years	UNFCCC 2011 submission	Average 2007-2009					
FR	Data from previous years	UNFCCC 2011 submission	Average 2007-2009					
UK	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2						
GR	Data from previous years	UNFCCC 2011 submission	Average 2007-2009					
HU	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2						
IE	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2						
IT	Data from previous years	UNFCCC 2011 submission	Average 2007-2009					
LT	Data from previous years	UNFCCC 2011 submission	Average 2007-2009					
LU	Data from previous years	UNFCCC 2011 submission	Average 2007-2009					
LV	Data from previous years	UNFCCC 2011 submission	Average 2007-2009					
MT	Data from previous years	UNFCCC 2011 submission	Average 2007-2009					
NL	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2						
PL	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2						
PT	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2						
RO	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2						
SE	Data from previous years	UNFCCC 2011 submission	Average 2007-2009					
SI	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2						
SK	Data from previous years	UNFCCC 2011 submission	Average 2007-2009					

Table 52Methods and data used for CH4 emissions from 1A2 Manufacturing industries and con-
struction

Source Ca	Source Category 1A2 2. Manufacturing Industries and Construction					
Gas	N2O					
Member	Projection Approach	Data Sources	Notes			
State						
AT	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2				
BE	Data from previous years	UNFCCC 2011 submission	Average 2007-2009			
BG	Data from previous years	UNFCCC 2011 submission	Average 2007-2009			
CY	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2				
CZ	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2				
DE	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2				
DK	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2				
EE	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2				
ES	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2				
FI	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2				
FR	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2				
UK	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2				
GR	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2				
HU	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2				
IE	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2				
IT	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2				
LT	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2				
LU	Data from previous years	UNFCCC 2011 submission				
LV	Data from previous years	UNFCCC 2011 submission	Average 2007-2009			
MT	Data from previous years	UNFCCC 2011 submission	Average 2007-2009			
NL	Data from previous years	UNFCCC 2011 submission	Average 2007-2009			
PL	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2				
PT	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2				
RO	Data from previous years	UNFCCC 2011 submission	Average 2007-2009			
SE	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2				
SI	Emission trends (dynamics) from other sources	Proxy inventory source categories 1A2 for CO2				
SK	Data from previous years	UNFCCC 2011 submission	Average 2007-2009			

Table 53	Methods and	data	used for	$\cdot N_2O$	emissions	from	1A2	Manufacturing	industries	and	con-
	struction										

Source Category 1A3 Trans		Transp	port		
Gas		CO2			
Member State	Member Projection Approach State		oach	Data Sources	Notes
AT	Emissions based on	s calcul activity	ation data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	
BE	Emissions based on	s calcul activity	ation data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	
BG	Emissions based on	s calcul activity	ation data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	
CY	Emissions based on	calcul activity	ation data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	
CZ	Emissions based on	s calcul activity	ation data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	
DE	Emissions based on	s calcul activity	ation data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	spirit replaced by data of the German Federal Office of Economics and Export Control (BAFA)
DK	Emissions based on	s calcul activity	ation data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	
EE	Emissions based on	s calcul activity	ation data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	Missing Eurostat data for kerosene (III/2010) replaced by own guess
ES	Emissions based on a	s calcul activity	ation data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	
FI	Emissions based on	s calcul activity	ation data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	
FR	Emissions based on	s calcul activity	ation data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	
UK	Emissions based on	calcul activity	ation data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	
GR	Emissions based on	s calcul activity	ation data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	
HU	Emissions based on	activity	ation data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	
IE	based on	activity	data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	
п	based on	activity	data	Eurostat monthly data on internal market delivenes of motor spirit, automotive diesel oil and kerosene/jet fuels	
LT	based on	activity	data	Eurostat monthly data on internal market delivenes of motor spirit, automotive diesel oil and kerosene/jet fuels	
LU	Emissions based on	s calcul activity	ation data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	Missing Eurostat data (I-VI/2010) replaced by own guess
LV	Emissions based on	s calcul activity	ation data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	
МТ	Emissions based on a	s calcul activity	ation data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	Missing Eurostat data for motor spirit and diesel (VII/2010 & I-VIII/2009) and for kerosene (VIII/2009-XII/2010) replaced by own guess
NL	Emissions based on	s calcul activity	ation data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	
PL	Emissions based on	s calcul activity	ation data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	
PT	Emissions based on	s calcul activity	ation data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	
RO	Emissions based on	s calcul activity	ation data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	
SE	Emissions based on	s calcul activity	ation data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	2010 Eurostat monthly data on motor spirit replaced by data of Statstics Sweden (SCB)
SI	Emissions based on	s calcul activity	ation data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	Missing Eurostat data for diesel (V/2010) and for kerosene (VI/2009) replaced by own guess
SK	Emissions based on	s calcul activity	ation data	Eurostat monthly data on internal market deliveries of motor spirit, automotive diesel oil and kerosene/jet fuels	

Table 54Methods and data used for CO2 emissions from 1A3 Transport

Source Ca	ategory	1A3	Transport		
Gas		CH4	N2O		
Member		Pr	oiection Approach		Data Sources
State			.,		
AT	Emission trend	ds (dynamics)	calculated for CO2 in sar	ne source category	CO2 projection in this report
BE	Emission trend	ds (dynamics)	calculated for CO2 in sar	ne source category	CO2 projection in this report
BG	Emission trend	ds (dynamics)	calculated for CO2 in sar	ne source category	CO2 projection in this report
CY	Emission trend	ds (dynamics)	calculated for CO2 in sar	ne source category	CO2 projection in this report
CZ	Emission trend	ds (dynamics)	calculated for CO2 in sar	ne source category	CO2 projection in this report
DE	Emission trend	ds (dynamics)	calculated for CO2 in sar	ne source category	CO2 projection in this report
DK	Emission trend	ds (dynamics)	calculated for CO2 in sar	ne source category	CO2 projection in this report
EE	Emission trend	ds (dynamics)	calculated for CO2 in sar	ne source category	CO2 projection in this report
ES	Emission trend	ds (dynamics)	calculated for CO2 in sar	ne source category	CO2 projection in this report
FI	Emission trend	ds (dynamics)	calculated for CO2 in sar	ne source category	CO2 projection in this report
FR	Emission trend	ds (dynamics)	calculated for CO2 in sar	ne source category	CO2 projection in this report
UK	Emission trend	ds (dynamics)	calculated for CO2 in sar	ne source category	CO2 projection in this report
GR	Emission trend	ds (dynamics)	calculated for CO2 in sar	ne source category	CO2 projection in this report
HU	Emission trend	ds (dynamics)	calculated for CO2 in sar	ne source category	CO2 projection in this report
IE	Emission trend	ds (dynamics)	calculated for CO2 in sar	ne source category	CO2 projection in this report
IT	Emission trend	ds (dynamics)	calculated for CO2 in sar	ne source category	CO2 projection in this report
LT	Emission trend	ds (dynamics)	calculated for CO2 in sar	ne source category	CO2 projection in this report
LU	Emission trend	ds (dynamics)	calculated for CO2 in sar	ne source category	CO2 projection in this report
LV	Emission trend	ds (dynamics)	calculated for CO2 in sar	ne source category	CO2 projection in this report
MT	Emission trend	ds (dynamics)	calculated for CO2 in sar	ne source category	CO2 projection in this report
NL	Emission trend	ds (dynamics)	calculated for CO2 in sar	ne source category	CO2 projection in this report
PL	Emission trend	ds (dynamics)	calculated for CO2 in sar	ne source category	CO2 projection in this report
PT	Emission trend	ds (dynamics)	calculated for CO2 in sar	ne source category	CO2 projection in this report
RO	Emission trend	ds (dynamics)	calculated for CO2 in sar	ne source category	CO2 projection in this report
SE	Emission trend	ds (dynamics)	calculated for CO2 in sar	ne source category	CO2 projection in this report
SI	Emission trend	ds (dynamics)	calculated for CO2 in sar	ne source category	CO2 projection in this report
SK	Emission trend	ds (dynamics)	calculated for CO2 in sar	ne source category	CO2 projection in this report

Table 55Methods and data used for CH_4 and N_2O emissions from 1A3 Transport

Source Category 1B1 1. Solid Fuels						
Gas	CO2					
Member	Projection Approach	Data Sources	Notes			
State						
AT	Data from previous years	UNFCCC 2011 submission				
BE	Data from previous years	UNFCCC 2011 submission				
BG	Data from previous years	UNFCCC 2011 submission				
CY	Data from previous years	UNFCCC 2011 submission				
CZ	Data from previous years	UNFCCC 2011 submission				
DE	Data from previous years	UNFCCC 2011 submission				
DK	Data from previous years	UNFCCC 2011 submission				
EE	Data from previous years	UNFCCC 2011 submission				
ES	Data from previous years	UNFCCC 2011 submission				
FI	Data from previous years	UNFCCC 2011 submission				
FR	Data from previous years	UNFCCC 2011 submission	Average 2007-2009			
UK	Data from previous years	UNFCCC 2011 submission				
GR	Data from previous years	UNFCCC 2011 submission				
HU	Data from previous years	UNFCCC 2011 submission				
IE	Data from previous years	UNFCCC 2011 submission				
IT	Data from previous years	UNFCCC 2011 submission				
LT	Data from previous years	UNFCCC 2011 submission				
LU	Data from previous years	UNFCCC 2011 submission				
LV	Data from previous years	UNFCCC 2011 submission				
MT	Data from previous years	UNFCCC 2011 submission				
NL	Data from previous years	UNFCCC 2011 submission	Average 2007-2009			
PL	Data from previous years	UNFCCC 2011 submission	Average 2007-2009			
PT	Data from previous years	UNFCCC 2011 submission				
RO	Data from previous years	UNFCCC 2011 submission				
SE	Data from previous years	UNFCCC 2011 submission	Average 2007-2009			
SI	Data from previous years	UNFCCC 2011 submission	Average 2007-2009			
SK	Data from previous years	UNFCCC 2011 submission				

Table 56Methods and data used for CO2 emissions from 1B1 Fugitive emissions from solid fuels

Source Ca	tegory 1B1 1. Solid Fue	els		
Gas	CH4			
Member State	Projection Approach	Data Sources	Notes	
AT	Data from previous years	UNFCCC 2011 submission		
BE	Data from previous years	UNFCCC 2011 submission	Average 2007-2009	
BG	Activity trends (dynamics) from other sources	Eurostat Primary Lignite Production (monthly data)	Indicator code 100100, product code 2210	
CY	Data from previous years	UNFCCC 2011 submission		
CZ	Activity trends (dynamics) from other sources	Eurostat Primary Hard Coal Production (monthly data)	Indicator code 100100, product code 2111	
DE	Activity trends (dynamics) from other sources	Eurostat Primary Hard Coal Production (monthly data)	Indicator code 100100, product code 2111	
DK	Data from previous years	UNFCCC 2011 submission		
EE	Activity trends (dynamics) from other sources	UNFCCC 2011 submission		
ES	Activity trends (dynamics) from other sources	UNFCCC 2011 submission	Average 2007-2009	
FI	Data from previous years	UNFCCC 2011 submission		
FR	Data from previous years	UNFCCC 2011 submission	Average 2007-2009	
UK	Activity trends (dynamics) from other sources	Eurostat Primary Hard Coal Production (monthly data)	Indicator code 100100, product code 2111	
GR	Activity trends (dynamics) from other sources	Eurostat Primary Lignite Production (monthly data)	Indicator code 100100, product code 2210	
HU	Data from previous years	UNFCCC 2011 submission	Average 2007-2009	
IE	Data from previous years	UNFCCC 2011 submission		
IT	Data from previous years	UNFCCC 2011 submission	Average 2007-2009	
LT	Data from previous years	UNFCCC 2011 submission		
LU	Data from previous years	UNFCCC 2011 submission		
LV	Data from previous years	UNFCCC 2011 submission		
MT	Data from previous years	UNFCCC 2011 submission		
NL	Data from previous years	UNFCCC 2011 submission	Average 2007-2009	
PL	Activity trends (dynamics) from other sources	Eurostat Primary Hard Coal Production (monthly data)	Indicator code 100100, product code 2111	
PT	Data from previous years	UNFCCC 2011 submission		
RO	Activity trends (dynamics) from other sources	Eurostat Primary Lignite Production (monthly data)	Indicator code 100100, product code 2210	
SE	Data from previous years	UNFCCC 2011 submission	Average 2007-2009	
SI	Activity trends (dynamics) from other sources	Eurostat Primary Lignite Production (monthly data)	Indicator code 100100, product code 2210	
SK	Activity trends (dynamics) from other sources	Eurostat Primary Lignite Production (monthly data)	Indicator code 100100, product code 2210	

Table 57 Methods and data used for CH4 emissions from 1B1 Fugitive emissions from solid fuels

Source Ca	tegory 182a a. Oli				
Gas Member	CO2				
State	Projection Approach	Data Sources	Notes		
AT	Data from previous years	UNFCCC 2011 submission	Average 2007-2009		
BE	Data from previous years	UNFCCC 2011 submission			
BG	Data from previous years	Eurostat Primary Crude Oil Production (monthly data)	Indicator code 100100, product code 3100		
CY	Data from previous years	UNFCCC 2011 submission			
CZ	Activity trends (dynamics) from other sources	CITL data (operator holding accounts) 2008- 20012	Main activity code 2		
DE	Activity trends (dynamics) from other sources	CITL data (operator holding accounts) 2008- 20012	Main activity code 2		
DK	Data from previous years	UNFCCC 2011 submission			
EE	Data from previous years	UNFCCC 2011 submission			
ES	Data from previous years	UNFCCC 2011 submission	Average 2007-2009		
FI	Activity trends (dynamics) from other sources	CITL data (operator holding accounts) 2008- 20012	Main activity code 2		
FR	Activity trends (dynamics) from other sources	CITL data (operator holding accounts) 2008- 20012	Main activity code 2		
UK	Data from previous years	UNFCCC 2011 submission	Average 2007-2009		
GR	Data from previous years	UNFCCC 2011 submission	Average 2007-2009		
HU	Data from previous years	vious years UNFCCC 2011 submission			
IE	Data from previous years UNFCCC 2011 submission				
IT	Data from previous years	Eurostat Primary Crude Oil Production (monthly data)	Indicator code 100100, product code 3100		
LT	Data from previous years	UNFCCC 2011 submission	Average 2007-2009		
LU	Data from previous years	UNFCCC 2011 submission			
LV	Data from previous years	UNFCCC 2011 submission			
MT	Data from previous years	UNFCCC 2011 submission			
NL	Data from previous years	UNFCCC 2011 submission	Average 2007-2009		
PL	Data from previous years	Eurostat Primary Crude Oil Production (monthly data)	Indicator code 100100, product code 3100		
PT	Data from previous years	UNFCCC 2011 submission	Average 2007-2009		
RO	Data from previous years	Eurostat Primary Crude Oil Production (monthly data)	Indicator code 100100, product code 3100		
SE	Data from previous years	UNFCCC 2011 submission	Average 2007-2009		
SI	Data from previous years	UNFCCC 2011 submission			
SK	Data from previous years	UNFCCC 2011 submission	Average 2007-2009		

Table 58Methods and data used for CO2 emissions from 1B2a Fugitive emissions from oil

Source Cat	egory 1B2a a. Oil			
Gas Member	CH4			
State	Projection Approach	Data Sources	Notes	
AT	Activity trends (dynamics) from other sources	Eurostat Primary Crude Oil Production (monthly data)	Indicator code 100100, product code 3100	
BE	Data from previous years	UNFCCC 2011 submission		
BG	Data from previous years	UNFCCC 2011 submission		
CY	Data from previous years	UNFCCC 2011 submission		
CZ	Data from previous years	UNFCCC 2011 submission		
DE	Activity trends (dynamics) from other sources	CITL data (operator holding accounts) 2008- 20012	Main activity code 2	
DK	Data from previous years	Eurostat Primary Crude Oil Production (monthly data)	Indicator code 100100, product code 3100	
EE	Data from previous years	UNFCCC 2011 submission		
ES	Data from previous years	CITL data (operator holding accounts) 2008- 20012	Main activity code 2	
FI	Data from previous years	CITL data (operator holding accounts) 2008- 20012	Main activity code 2	
FR	Data from previous years	UNFCCC 2011 submission		
UK	Data from previous years	UNFCCC 2011 submission		
GR	Data from previous years	UNFCCC 2011 submission		
HU	Activity trends (dynamics) from other sources	Eurostat Primary Crude Oil Production (monthly data)	Indicator code 100100, product code 3100	
IE	Data from previous years	UNFCCC 2011 submission		
IT	Activity trends (dynamics) from other sources	Eurostat Primary Crude Oil Production (monthly data)	Indicator code 100100, product code 3100	
LT	Data from previous years	UNFCCC 2011 submission		
LU	Data from previous years	UNFCCC 2011 submission		
LV	Data from previous years	UNFCCC 2011 submission		
MT	Data from previous years	UNFCCC 2011 submission		
NL	Data from previous years	UNFCCC 2011 submission		
PL	Activity trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-20012	Main activity code 2	
PT	Activity trends (dynamics) from other sources	CITL data (operator holding accounts) 2008-20012	Main activity code 2	
RO	Activity trends (dynamics) from other sources	Eurostat Primary Crude Oil Production (monthly data)	Indicator code 100100, product code 3100	
SE	Data from previous years	CITL data (operator holding accounts) 2008-20012	Main activity code 2	
SI	Data from previous years	UNFCCC 2011 submission		
SK	Data from previous years	UNFCCC 2011 submission		

Table 59	Methods and data	used for CH4	emissions from	1B2a Fugitive	emissions from oil

Source Ca	tegory 1B2b b. Natural Ga	S	
Gas	CO2		
Member State	Projection Approach	Data Sources	Notes
AT	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
BE	Activity trends (dynamics) from other sources	Eurostat Total Natural Gas Consumption (monthly data)	Indicator code 100900, product code 4100
BG	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
CY	Data from previous years	UNFCCC 2011 submission	
CZ	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
DE	Activity trends (dynamics) from other sources	Eurostat Total Natural Gas Production (monthly data)	Indicator code 100100, product code 4100
DK	Data from previous years	UNFCCC 2011 submission	
EE	Data from previous years	UNFCCC 2011 submission	
ES	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
FI	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
FR	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
UK	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
GR	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
HU	Data from previous years	UNFCCC 2011 submission	
IE	Data from previous years	UNFCCC 2011 submission	
IT	Activity trends (dynamics) from other sources	Eurostat Total Natural Gas Consumption (monthly data)	Indicator code 100900, product code 4100
LT	Data from previous years	UNFCCC 2011 submission	
LU	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
LV	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
MT	Data from previous years	UNFCCC 2011 submission	
NL	Activity trends (dynamics) from other sources	Eurostat Total Natural Gas Consumption (monthly data)	Indicator code 100900, product code 4100
PL	Activity trends (dynamics) from other sources	Eurostat Total Natural Gas Consumption (monthly data)	Indicator code 100900, product code 4100
PT	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
RO	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
SE	Data from previous years	UNFCCC 2011 submission	
SI	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
SK	Data from previous years	UNFCCC 2011 submission	Average 2007-2009

Table 60Methods and data used for CO2 emissions from 1B2b Fugitive emissions from gas

Source Cate	egory 1B2b	b. Natural Gas		
Member State	Projection Ap	proach	Data Sources	Notes
AT	Data from previous years		UNFCCC 2011 submission	Average 2007-2009
BE	Data from previous years		UNFCCC 2011 submission	Average 2007-2009
BG	Data from previous years		UNFCCC 2011 submission	Average 2007-2009
CY	Data from previous years		UNFCCC 2011 submission	
cz	Data from previous years		UNFCCC 2011 submission	Average 2007-2009
DE	Activity trends (dynamics) fro	m other sources	Eurostat Total Natural Gas Consumption (monthly data)	Indicator code 100900, product code 4100
DK	Data from previous years		UNFCCC 2011 submission	Average 2007-2009
EE	Activity trends (dynamics) fro	m other sources	Eurostat Total Natural Gas Consumption (monthly data)	Indicator code 100900, product code 4100
ES	Data from previous years		UNFCCC 2011 submission	Average 2007-2009
FI	Data from previous years		UNFCCC 2011 submission	Average 2007-2009
FR	Data from previous years		UNFCCC 2011 submission	Average 2007-2009
UK	Data from previous years		UNFCCC 2011 submission	Average 2007-2009
GR	Data from previous years		UNFCCC 2011 submission	Average 2007-2009
HU	Data from previous years		UNFCCC 2011 submission	Average 2007-2009
IE	Data from previous years		UNFCCC 2011 submission	Average 2007-2009
IT	Data from previous years		UNFCCC 2011 submission	Average 2007-2009
LT	Data from previous years		UNFCCC 2011 submission	
LU	Data from previous years		UNFCCC 2011 submission	Average 2007-2009
LV	Data from previous years		UNFCCC 2011 submission	Average 2007-2009
МТ	Data from previous years		UNFCCC 2011 submission	
NL	Activity trends (dynamics) fro	m other sources	Eurostat Total Natural Gas Consumption (monthly data)	Indicator code 100900, product code 4100
PL	Activity trends (dynamics) fro	m other sources	Eurostat Total Natural Gas Consumption (monthly data)	Indicator code 100900, product code 4100
PT	Data from previous years		UNFCCC 2011 submission	Average 2007-2009
RO	Activity trends (dynamics) fro	m other sources	Eurostat Total Natural Gas Consumption (monthly data)	Indicator code 100900, product code 4100
SE	Data from previous years		UNFCCC 2011 submission	
SI	Activity trends (dynamics) fro	m other sources	Eurostat Total Natural Gas Consumption (monthly data)	Indicator code 100900, product code 4100
SK	Data from previous years		UNFCCC 2011 submission	Average 2007-2009

Table 61Methods and data used for CH4 emissions from 1B2b Fugitive emissions from	gas
---	-----

Source Ca	tegory 1B2c c. Venting		
Gas	CO2		
Member	Projection Approach	Data Sources	Notes
State			Notes
AT	Data from previous years	UNFCCC 2011 submission	
BE	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
BG	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
CY	Data from previous years	UNFCCC 2011 submission	
CZ	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
DE	Data from previous years	UNFCCC 2011 submission	
DK	Data from previous years	UNFCCC 2011 submission	
EE	Data from previous years	UNFCCC 2011 submission	
ES	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
FI	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
FR	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
UK	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
GR	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
HU	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
IE	Data from previous years	UNFCCC 2011 submission	
IT	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
1.7	Activity trends (dynamics) from other	Eurostat Crude Oil production Production	Indicator code 100100, product code
L1	sources	(monthly data)	3100
LU	Data from previous years	UNFCCC 2011 submission	
LV	Data from previous years	UNFCCC 2011 submission	
MT	Data from previous years	UNFCCC 2011 submission	
NL	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
PL	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
PT	Data from previous years	UNFCCC 2011 submission	
RO	Data from previous years	UNFCCC 2011 submission	
SE	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
SI	Data from previous years	UNFCCC 2011 submission	
SK	Data from previous years	UNFCCC 2011 submission	Average 2007-2009

Table 62Methods and data used for CO2 emissions from 1B2c Venting

Source Ca	Source Category 1B2c c. Venting			
Gas	CH4			
Member	Projection Approach	Data Sources	Notes	
State		Data oources	Holes	
AT	Data from previous years	UNFCCC 2011 submission		
BE	Data from previous years	UNFCCC 2011 submission		
BG	Data from previous years	UNFCCC 2011 submission	Average 2007-2009	
CY	Data from previous years	UNFCCC 2011 submission		
CZ	Data from previous years	UNFCCC 2011 submission	Average 2007-2009	
DE	Data from previous years	UNFCCC 2011 submission		
DK	Data from previous years	UNFCCC 2011 submission	Average 2007-2009	
EE	Data from previous years	UNFCCC 2011 submission		
ES	Data from previous years	UNFCCC 2011 submission	Average 2007-2009	
FI	Data from previous years	UNFCCC 2011 submission		
FR	Data from previous years	UNFCCC 2011 submission		
UK	Data from previous years	UNFCCC 2011 submission	Average 2007-2009	
GR	Data from previous years	UNFCCC 2011 submission	Average 2007-2009	
HU	Data from previous years	UNFCCC 2011 submission	Average 2007-2009	
IE	Data from previous years	UNFCCC 2011 submission		
ІТ	Data from previous years	UNFCCC 2011 submission	Average 2007-2009	
LT	Activity trends (dynamics) from other sources	Eurostat Crude Oil production Production (monthly data)	Indicator code 100100, product code 3100	
LU	Data from previous years	UNFCCC 2011 submission		
LV	Data from previous years	UNFCCC 2011 submission		
MT	Data from previous years	UNFCCC 2011 submission		
NL	Data from previous years	UNFCCC 2011 submission	Average 2007-2009	
PL	Data from previous years	UNFCCC 2011 submission		
PT	Data from previous years	UNFCCC 2011 submission		
RO	Data from previous years	UNFCCC 2011 submission	Average 2007-2009	
SE	Data from previous years	UNFCCC 2011 submission		
SI	Data from previous years	UNFCCC 2011 submission		
SK	Data from previous years	UNFCCC 2011 submission	Average 2007-2009	

Table 63	Methods and	data used fo	r CH4 emissions	from 1B2c Venting	g
----------	-------------	--------------	-----------------	-------------------	---

Source Category 1B2c c. flaring				
Gas	CO2			
Member	Projection Approach	Data Sources	Notes	
State				
AT	Data from previous years	UNFCCC 2011 submission		
BE	Data from previous years	UNFCCC 2011 submission		
BG	Data from previous years	UNFCCC 2011 submission		
CY	Data from previous years	UNFCCC 2011 submission		
CZ	Emission trends (dynamics) from other sources	CITL data (operator holding account) 2008-2012	Main activity code 2	
DE	Emission trends (dynamics) from other sources	CITL data (operator holding account) 2008-2012	Main activity code 2	
DK	Data from previous years	UNFCCC 2011 submission		
EE	Data from previous years	UNFCCC 2011 submission		
ES	Data from previous years	UNFCCC 2011 submission	Average 2007-2009	
FI	Data from previous years	UNFCCC 2011 submission		
FR	Data from previous years	UNFCCC 2011 submission		
UK	Data from previous years	UNFCCC 2011 submission	Average 2007-2009	
GR	Data from previous years	UNFCCC 2011 submission	Average 2007-2009	
HU	Data from previous years	UNFCCC 2011 submission		
IE	Data from previous years	UNFCCC 2011 submission		
IT	Data from previous years	UNFCCC 2011 submission	Average 2007-2009	
LT	Activity trends (dynamics) from other sources	Eurostat Crude Oil production Production (monthly data)	Indicator code 100100, product code 3100	
LU	Data from previous years	UNFCCC 2011 submission		
LV	Data from previous years	UNFCCC 2011 submission		
MT	Data from previous years	UNFCCC 2011 submission		
NL	Data from previous years	UNFCCC 2011 submission	Average 2007-2009	
PL	Data from previous years	UNFCCC 2011 submission	Average 2007-2009	
PT	Data from previous years	UNFCCC 2011 submission	Average 2007-2009	
RO	Data from previous years	UNFCCC 2011 submission	Average 2007-2009	
SE	Data from previous years	UNFCCC 2011 submission		
SI	Data from previous years	UNFCCC 2011 submission		
SK	Data from previous years	UNFCCC 2011 submission	Average 2007-2009	

Table 64Methods and data used for CO2 emissions from 1B2c Flaring

Source Cat	egory 1B2c c. flaring		
Gas	CH4		
Member	Projection Approach	Data Sources	Notos
State		Data Sources	Notes
AT	Data from previous years	UNFCCC 2011 submission	
BE	Data from previous years	UNFCCC 2011 submission	
BG	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
CY	Data from previous years	UNFCCC 2011 submission	
CZ	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
DE	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
DK	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
EE	Data from previous years	UNFCCC 2011 submission	
ES	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
FI	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
FR	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
UK	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
GR	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
HU	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
IE	Data from previous years	UNFCCC 2011 submission	
IT	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
LT	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
LU	Data from previous years	UNFCCC 2011 submission	
LV	Data from previous years	UNFCCC 2011 submission	
MT	Data from previous years	UNFCCC 2011 submission	
NL	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
PL	Data from previous years	UNFCCC 2011 submission	
PT	Data from previous years	UNFCCC 2011 submission	
RO	Data from previous years	UNFCCC 2011 submission	
SE	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
SI	Data from previous years	UNFCCC 2011 submission	
SK	Data from previous years	UNFCCC 2011 submission	Average 2007-2009

Table 65Methods and data used for CH4 emissions from 1B2c Flaring

Gas CO2 Member State Projection Approach Data Sources Notes AT Direct use of emissions data from other sources CITL data as of 24 May 2011 from EU ETS data viewer CITL data + scaling factor based on compa inventory data - CITL data for 2005-2009 BG Direct use of emissions data from other sources CITL data as of 24 May 2011 from EU ETS data viewer CITL data as of 24 May 2011 from EU ETS data viewer CITL data as of 24 May 2011 from EU ETS data viewer CITL data as of 24 May 2011 from EU ETS data viewer CITL data as of 24 May 2011 from EU ETS data viewer CITL data as of 24 May 2011 from EU ETS data viewer CITL data as of 24 May 2011 from EU ETS data viewer CITL data as of 24 May 2011 from EU ETS data viewer CITL data as of 24 May 2011 from EU ETS data viewer CITL data as of 24 May 2011 from EU ETS data viewer CITL data as of 24 May 2011 from EU ETS data viewer CITL data as of 24 May 2011 from EU ETS data viewer CITL data as of 24 May 2011 from EU ETS data viewer CITL data as of 24 May 2011 from EU ETS data viewer CITL data as of 24 May 2011 from EU ETS data viewer CITL data as of 24 May 2011 from EU ETS data viewer CITL data as of 24 May 2011 from EU ETS data viewer CITL data as of 24 May 2011 from EU ETS data viewer CITL data as of 24 May 2011 from EU ETS data viewer CITL data as colar May 2011 from EU ETS data viewer CITL data as colar May 2011 from EU ETS data viewer CITL data as col	Source Ca	tegory 2A1 Cement Pro	duction	
Member StateProjection ApproachData SourcesNotesATDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data as caling factor based on compa inventory data - CITL data for 2005-2009 inventory data - CITL data for 2005-2009 CITL data as of 24 May 2011 from EU ETS data viewerDEDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data as caling factor based on compa inventory data - CITL data for 2005-2009 CITL data as caling factor based on compa inventory data - CITL data for 2005-2009 CITL data as caling factor based on compa inventory data - CITL data for 2005-2009 CITL data as caling factor based on compa inventory data - CITL data for 2005-2009 CITL data as caling factor based on compa inventory data - CITL data for 2005-2009 CITL data as caling factor based on compa inventory data - CITL data for 2005-2009 CITL data as caling factor based on compa inventory data - CITL data for 2005-2009 CITL data as caling factor based on compa inventory data - CITL data for 2005-2009 CITL data as caling factor based on compa inventory data - CITL data for 2005-2009 CITL data as caling factor based on compa inventory data - CITL data for 2005-2009 CITL data as caling factor based on compa inventory data - CITL data for 2005-2009 CITL data as caling factor based on compa in	Gas	CO2		
AT Direct use of emissions data from other sources CITL data as of 24 May 2011 from EU EX data viewer CITL data as of 24 May 2011 from	Member State	Projection Approach	Data Sources	Notes
BE Direct use of emissions data from other sources CITL data as of 24 May 2011 from EU EX data viewer CITL data for 2005-2009 CITL data	AT	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
BGDirect use of emissions data from other sourcesCTL data as of 24 May 2011 from EU CTL data as of 24 May 2011 from EU ETS data viewerCTL data sealing factor based on compa inventory data - CTL data for 2005-2009 inventory d	BE	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
CYData from previous yearCITL data as of 24 May 2011 from EUCZDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EUCITL data as - c24 May 2011 from EUDEDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EUCITL data as - c1TL data for 2005-2009DKDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EUCITL data as c124 May 2011 from EUEEDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EUCITL data as c124 May 2011 from EUFRDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EUCITL data as c124 May 2011 from EUFRDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EUCITL data as c124 May 2011 from EUFRDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EUCITL data as c124 May 2011 from EUFRDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EUCITL data as c124 May 2011 from EUFRDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EUCITL data as of 24 May 2011 from EUFRDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EUCITL data as of 24 May 2011 from EUFIDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EUCITL data as of 24 May 2011 from EUFRDirect use of emissions data from other sourcesCITL data as of 24	BG	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
CzDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data as of 24 May 2011 from EU corresCITL data as of 24 May 20	CY	Data from previous year	CITL data as of 24 May 2011 from EU	
DEDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data as of 24 May 2011 from EU ETS data viewerCITL data as of 24 May 2011 from EU ETS data viewerESDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data as of 24 May 2011 from EU ETS data viewerCITL data as of 24 May 2011 from EU ETS data viewerFIDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data as of 24 May 2011 from EU ETS data viewerFRDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data as of 24 May 2011 from EU ETS data viewerGRDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data as cold as of 24 May 2011 from EU ETS data viewerHUDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data as cold as of 24 May 2011 from EU ETS data viewerITDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data as cold as or 2009 CITL data as of 24 May 2011 from EU ETS data viewerITDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data a scaling factor based on compa inventory data - CITL data for 2005-2009ITDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data a scaling fac	cz	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
DKDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data + scaling factor based on compa inventory data - CITL data for 2005-2009ESDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data + scaling factor based on compa inventory data - CITL data for 2005-2009FRDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data + scaling factor based on compa 	DE	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
EEDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data + scaling factor based on compa inventory data - CITL data + scaling factor based on compa inventory data - CITL data + scaling factor based on compa inventory data - CITL data + scaling factor based on compa inventory data - CITL data + scaling factor based on compa inventory data - CITL data + scaling factor based on compa inventory data - CITL data + scaling factor based on compa inventory data - CITL data + scaling factor based on compa inventory data - CITL data + scaling factor based on compa inventory data - CITL data + scaling factor based on compa inventory data - CITL data + scaling factor based on compa 	DK	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
EsDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data + scaling factor based on compa inventory data - CITL data for 2005-2009FRDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data + scaling factor based on compa inventory data - CITL data for 2005-2009UKDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data + scaling factor based on compa inventory data - CITL data for 2005-2009GRDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data + scaling factor based on compa inventory data - CITL data for 2005-2009HUDirect use of emissions data from other 	EE	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
FIDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data + scaling factor based on compa inventory data - CITL data for 2005-2009UKDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data + scaling factor based on compa inventory data - CITL data for 2005-2009GRDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data + scaling factor based on compa inventory data - CITL data for 2005-2009HUDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data + scaling factor based on compa inventory data - CITL data for 2005-2009IEDirect use of emissions data from other 	ES	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
FRDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data + scaling factor based on compa inventory data - CITL data for 2005-2009GRDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data + scaling factor based on compa inventory data - CITL data for 2005-2009HUDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data + scaling factor based on compa 	FI	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
UKDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data + scaling factor based on compa inventory data - CITL data + scaling factor based on compa inventory data - CITL data + scaling factor based on compa inventory data - CITL data + scaling factor based on compa inventory data - CITL data + scaling factor based on compa inventory data - CITL data + scaling factor based on compa inventory data - CITL data + scaling factor based on compa inventory data - CITL data + scaling factor based on compa inventory data - CITL data + scaling factor based on compa inventory data - CITL data + scaling factor based on compa inventory data - CITL data + scaling factor based on compa 	FR	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
GRDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data as of 24 May 2011 from EU ETS data viewerCITL data as of 24 May 2011 from EU ETS data viewerCITL data as of 24 May 2011 from EU ETS data viewerCITL data as of 24 May 2011 from EU ETS data viewerCITL data as of 24 May 2011 from EU ETS data viewerCITL data as of 24 May 2011 from EU ETS data viewerCITL data as of 24 May 2011 from EU ETS data viewerCITL data as of 24 May 2011 from EU ETS data viewerCITL data as of 24 May 2011 from EU ETS data viewerCITL data as of 24 May 2011 from EU ETS data viewerCITL data as of 24 May 2011 from EU 	UK	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
HUDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data as of 24 May 2011 from EU ETS data viewerCITL data + scaling factor based on compa inventory data - CITL data for 2005-2009ITDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data as of 24 May 2011 from EU ETS data viewerCITL data + scaling factor based on compa inventory data - CITL data for 2005-2009LTDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data as of 24 May 2011 from EU ETS data viewerCITL data as of 24 May 2011 from EU ETS data viewerCITL data as of 24 May 2011 from EU ETS data viewerCITL data as of 24 May 2011 from EU ETS data viewerCITL data as of 24 May 2011 from EU ETS data viewerCITL data as of 24 May 2011 from EU ETS data viewerCITL data as of 24 May 2011 from EU 	GR	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
IEDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data as of 24 May 2011 from EU ETS data viewerCITL data + scaling factor based on compa inventory data - CITL data for 2005-2009LTDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data as of 24 May 2011 from EU ETS data viewerCITL data + scaling factor based on compa inventory data - CITL data for 2005-2009LUDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data as of 24 May 2011 from EU ETS data viewerCITL data + scaling factor based on compa inventory data - CITL data for 2005-2009LVDirect use of emissions data from other 	HU	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
ITDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data + scaling factor based on compa inventory data - CITL data for 2005-2009LTDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data + scaling factor based on compa inventory data - CITL data for 2005-2009LUDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data + scaling factor based on compa inventory data - CITL data for 2005-2009LVDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data + scaling factor based on compa inventory data - CITL data for 2005-2009NLDirect use of emissions data from other 	IE	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
LTDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data as of 24 May 2011 from EU ETS data viewerCITL data sof 24 May 2011 from EU ETS data viewerCITL data sof 24 May 2011 from EU ETS data viewerCITL data sof 24 May 2011 from EU ETS data viewerCITL data sof 24 May 2011 from EU ETS data viewerCITL data sof 24 May 2011 from EU ETS data viewerCITL data sof 24 May 2011 from EU ETS data viewerCITL data sof 24 May 2011 from EU ETS data viewerCITL data sof 24 May 2011 from EU ETS data viewerCITL data sof 24 May 2011 from EU ETS data viewerCITL data sof 24 May 2011 from EU 	IT	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
LUDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data + scaling factor based on compa inventory data - CITL data for 2005-2009LVDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data + scaling factor based on compa inventory data - CITL data for 2005-2009MTData from previous year Direct use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data + scaling factor based on compa inventory data - CITL data for 2005-2009PLDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data as of 24 May 2011 from EU 	LT	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
LVDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data + scaling factor based on compa inventory data - CITL data for 2005-2009MTData from previous year Direct use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data + scaling factor based on compa inventory data - CITL data for 2005-2009PLDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data + scaling factor based on compa inventory data - CITL data for 2005-2009PTDirect use of emissions data from other sourcesCITL data as of 24 May 2011 from EU ETS data viewerCITL data + scaling factor based on compa 	LU	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
MT Data from previous year CITL data as of 24 May 2011 from EU CITL data + scaling factor based on compa inventory data - CITL data for 2005-2009 PL Direct use of emissions data from other sources CITL data as of 24 May 2011 from EU CITL data + scaling factor based on compa inventory data - CITL data for 2005-2009 PT Direct use of emissions data from other sources CITL data as of 24 May 2011 from EU CITL data + scaling factor based on compa inventory data - CITL data for 2005-2009 RO Direct use of emissions data from other sources CITL data as of 24 May 2011 from EU CITL data + scaling factor based on compa inventory data - CITL data for 2005-2009 RO Direct use of emissions data from other sources CITL data as of 24 May 2011 from EU CITL data + scaling factor based on compa inventory data - CITL data for 2005-2009 SE Direct use of emissions data from other sources CITL data as of 24 May 2011 from EU CITL data + scaling factor based on compa inventory data - CITL data for 2005-2009 SE Direct use of emissions data from other sources CITL data as of 24 May 2011 from EU CITL data + scaling factor based on compa inventory data - CITL data for 2005-2009 SE Direct use of emissions data from other sources CITL data as of 24 May 2011 from EU CITL data + scaling factor based on compa inventory data - CITL data for 2005-2009	LV	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
NL Direct use of emissions data from other sources CITL data as of 24 May 2011 from EU ETS data viewer CITL data + scaling factor based on compa inventory data - CITL data for 2005-2009 PL Direct use of emissions data from other sources CITL data as of 24 May 2011 from EU ETS data viewer CITL data + scaling factor based on compa inventory data - CITL data for 2005-2009 PT Direct use of emissions data from other sources CITL data as of 24 May 2011 from EU ETS data viewer CITL data + scaling factor based on compa inventory data - CITL data for 2005-2009 RO Direct use of emissions data from other sources CITL data as of 24 May 2011 from EU ETS data viewer CITL data + scaling factor based on compa inventory data - CITL data for 2005-2009 SE Direct use of emissions data from other sources CITL data as of 24 May 2011 from EU ETS data viewer CITL data + scaling factor based on compa inventory data - CITL data for 2005-2009 SE Direct use of emissions data from other sources CITL data as of 24 May 2011 from EU ETS data viewer CITL data + scaling factor based on compa inventory data - CITL data for 2005-2009 SE Direct use of emissions data from other sources CITL data as of 24 May 2011 from EU ETS data viewer CITL data + scaling factor based on compa inventory data - CITL data for 2005-2009	MT	Data from previous year		
PL Direct use of emissions data from other sources CITL data as of 24 May 2011 from EU ETS data viewer CITL data + scaling factor based on compa inventory data - CITL data for 2005-2009 PT Direct use of emissions data from other sources CITL data as of 24 May 2011 from EU ETS data viewer CITL data + scaling factor based on compa inventory data - CITL data for 2005-2009 RO Direct use of emissions data from other sources CITL data as of 24 May 2011 from EU ETS data viewer CITL data + scaling factor based on compa inventory data - CITL data for 2005-2009 SE Direct use of emissions data from other sources CITL data as of 24 May 2011 from EU ETS data viewer CITL data + scaling factor based on compa inventory data - CITL data for 2005-2009 SE Direct use of emissions data from other sources CITL data as of 24 May 2011 from EU ETS data viewer CITL data + scaling factor based on compa inventory data - CITL data for 2005-2009	NL	sources	ETS data viewer	inventory data - CITL data for 2005-2009
PT Direct use of emissions data from other sources CITL data as of 24 May 2011 from EU ETS data viewer CITL data + scaling factor based on compa inventory data - CITL data for 2005-2009 RO Direct use of emissions data from other sources CITL data as of 24 May 2011 from EU ETS data viewer CITL data + scaling factor based on compa inventory data - CITL data for 2005-2009 SE Direct use of emissions data from other sources CITL data as of 24 May 2011 from EU ETS data viewer CITL data + scaling factor based on compa inventory data - CITL data for 2005-2009 SE Direct use of emissions data from other sources CITL data as of 24 May 2011 from EU ETS data viewer CITL data + scaling factor based on compa inventory data - CITL data for 2005-2009	PL	Direct use of emissions data from other sources	CIIL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
RO Direct use of emissions data from other sources CITL data as of 24 May 2011 from EU ETS data viewer CITL data + scaling factor based on compa inventory data - CITL data for 2005-2009 SE Direct use of emissions data from other sources CITL data as of 24 May 2011 from EU ETS data viewer CITL data + scaling factor based on compa inventory data - CITL data for 2005-2009 SE Direct use of emissions data from other sources CITL data as of 24 May 2011 from EU ETS data viewer CITL data + scaling factor based on compa inventory data - CITL data for 2005-2009	PT	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
SE Direct use of emissions data from other sources CITL data as of 24 May 2011 from EU ETS data viewer inventory data - CITL data for 2005-2009	RO	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
	SE	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
SI Direct use of emissions data from other sources ETS data viewer CTL data as of 24 May 2011 from EU ETS data viewer inventory data - CTL data + scaling factor based on compa inventory data - CTL data for 2005-2009	SI	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
SK Direct use of emissions data from other sources CITL data as of 24 May 2011 from EU ETS data viewer CITL data + scaling factor based on compa inventory data - CITL data for 2005-2009	SK	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009

Table 66Methods and data used for CO2 emissions from 2.A.1 Cement Production
Source C	Category 2A2 Lime Production		
Gas	CO2		
Member State	Projection Approach	Data Sources	Notes
AT	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
BE	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
BG	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
СҮ	Data from previous year		CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
cz	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
DE	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
DK	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
EE	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
ES	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
FI	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
FR	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
UK	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
GR	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
HU	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
IE	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
п	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
LT	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
LU	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
LV	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
мт	Data from previous year		CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
NL	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
PL	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
РТ	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
RO	Data from previous year	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
SE	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
SI	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009
SK	Direct use of emissions data from other sources	CITL data as of 24 May 2011 from EU ETS data viewer	CITL data + scaling factor based on comparison inventory data - CITL data for 2005-2009

Table 67Methods and data used for CO2 emissions from 2.A.2 Lime Production

Source Ca	tegory 2A Mineral Produc	ts	
Gas	CH4		
Member	Braiaction Approach	Data Sources	Notos
State	Projection Approach	Data Sources	Notes
AT			
BE			
BG			
CY			
CZ	Data from previous years	UNFCCC 2011 submission	Value of 2009
DE			
DK			
EE			
ES			
FI			
FR			
UK	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
GR			
HU			
IE			
IT			
LT			
LU			
LV			
MT			
NL			
PL			
PT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
RO			
SE			
SI			
SK			

Table 68Methods and data used for CH4 emissions from 2.A Mineral products

Source Ca	itegory 2B1 Ammonia	Production	
Gas	CO2		
Member	Projection Approach	Data Sources	Notes
State		Dula Obuloco	10100
AT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
BE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
BG	Data from previous years	UNFCCC 2011 submission	Value of 2009
CY			
CZ	Data from previous years	UNFCCC 2011 submission	Value of 2009
DE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
DK			
EE	Data from previous years	UNFCCC 2011 submission	Value of 2009
ES	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
FI			
FR	Data from previous years	UNFCCC 2011 submission	Value of 2009
UK	Data from previous years	UNFCCC 2011 submission	Value of 2009
GR	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
HU	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
IE			
IT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
LT	Data from previous years	UNFCCC 2011 submission	Value of 2009
LU			
LV			
MT			
NL	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
PL	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
PT	Data from previous years	UNFCCC 2011 submission	Value of 2009
RO	Data from previous years	UNFCCC 2011 submission	Value of 2009
SE			
SI			
SK	Data from previous years	UNFCCC 2011 submission	Value of 2009

Table 69Methods and data used for CO2 emissions from 2B1 Ammonia Production

Source Category 2B2 Nitric Acid Production					
Gas	Gas N2O				
Member	Projection Approach	Data Sources	Notos		
State	Frojection Approach	Data Sources	Notes		
AT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
BE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
BG	Data from previous years	UNFCCC 2011 submission	Value of 2009		
CY					
CZ	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
DE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
DK					
EE					
ES	Data from previous years	UNFCCC 2011 submission	Value of 2009		
FI	Data from previous years	UNFCCC 2011 submission	Value of 2009		
FR	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
UK	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
GR	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
HU	Data from previous years	UNFCCC 2011 submission	Value of 2009		
IE					
IT	Data from previous years	UNFCCC 2011 submission	Value of 2009		
LT	Data from previous years	UNFCCC 2011 submission	Value of 2009		
LU					
LV					
MT					
NL	Data from previous years	UNFCCC 2011 submission	Value of 2009		
PL	Data from previous years	UNFCCC 2011 submission	Value of 2009		
PT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
RO	Data from previous years	UNFCCC 2011 submission	Value of 2009		
SE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
SI					
SK	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		

Table 70Methods and data used for N2O emissions from 2B2 Nitric Acid Production

Source Ca	tegory 2B3 Adipic Acid	Production		
Gas	N2O			
Member	Projection Approach	Data Sources	Notes	
State	r tojection Approach	Bula oouloes	10103	
AT				
BE				
BG				
CY				
CZ				
DE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
DK				
EE				
ES				
FI				
FR	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
UK	Data from previous years	UNFCCC 2011 submission	Value of 2009	
GR				
HU				
IE				
IT	Data from previous years	UNFCCC 2011 submission	Value of 2009	
LT				
LU				
IV				
MT				
NI				
PO				
NU 8E				
SE CI				
51				
SK				

Table 71Methods and data used for N2O emissions from 2B3 Adipic Acid Production

Source Cat	Source Category 2.C 2.C Metal Production				
Gas	Gas CH4				
Member	Projection Approach	Data Sources	Notes		
State		Dulu Cources	10103		
AT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
BE	Data from previous years	UNFCCC 2011 submission	Value of 2009		
BG					
CY					
CZ	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
DE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
DK					
EE					
ES	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
FI	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
FR	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
UK	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
GR	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
HU					
IE					
IT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
LT					
LU					
LV	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
MT					
NL					
PL	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
PT					
RO					
SE	Data from previous years	UNFCCC 2011 submission	Value of 2009		
SI					
SK	Data from previous years	UNFCCC 2011 submission	Value of 2009		
		1			

Table 72Methods and data used for CH_4 emissions from 2.C Metal production

Source Category 2C C. Metal Production			
Gas	CO2		
Member	Projection Approach	Data Sources	Notes
State			
AT	Complex calculation	CRF 2C and CRF 2C1 proxy	CRF 2C1 proxy + (CRF 2C - CRF 2C1)previous year
BE	Complex calculation	CRF 2C and CRF 2C1 proxy	CRF 2C1 proxy + (CRF 2C - CRF 2C1)previous year
BG	Complex calculation	CRF 2C and CRF 2C1 proxy	CRF 2C1 proxy + (CRF 2C - CRF 2C1)previous year
CY	Data from previous years	CRF 2C	
CZ	Complex calculation	CRF 2C and CRF 2C1 proxy	CRF 2C1 proxy + (CRF 2C - CRF 2C1)previous year
DE	Complex calculation	CRF 2C and CRF 2C1 proxy	CRF 2C1 proxy + (CRF 2C - CRF 2C1)previous year
DK	Data from previous years	CRF 2C	
EE	Data from previous years	CRF 2C	
ES	Complex calculation	CRF 2C and CRF 2C1 proxy	CRF 2C1 proxy + (CRF 2C - CRF 2C1)previous year
FI	Complex calculation	CRF 2C and CRF 2C1 proxy	CRF 2C1 proxy + (CRF 2C - CRF 2C1)previous year
FR	Complex calculation	CRF 2C and CRF 2C1 proxy	CRF 2C1 proxy + (CRF 2C - CRF 2C1)previous year
UK	Complex calculation	CRF 2C and CRF 2C1 proxy	CRF 2C1 proxy + (CRF 2C - CRF 2C1)previous year
GR	Complex calculation	CRF 2C and CRF 2C1 proxy	CRF 2C1 proxy + (CRF 2C - CRF 2C1)previous year
HU	Complex calculation	CRF 2C and CRF 2C1 proxy	CRF 2C1 proxy + (CRF 2C - CRF 2C1)previous year
IE	Data from previous years	CRF 2C	
IT	Complex calculation	CRF 2C and CRF 2C1 proxy	CRF 2C1 proxy + (CRF 2C - CRF 2C1)previous year
LT	Complex calculation	CRF 2C and CRF 2C1 proxy	CRF 2C1 proxy + (CRF 2C - CRF 2C1)previous year
LU	Complex calculation	CRF 2C and CRF 2C1 proxy	CRF 2C1 proxy + (CRF 2C - CRF 2C1)previous year
LV	Complex calculation	CRF 2C and CRF 2C1 proxy	CRF 2C1 proxy + (CRF 2C - CRF 2C1)previous year
MT	Data from previous years	CRF 2C	
NL	Complex calculation	CRF 2C and CRF 2C1 proxy	CRF 2C1 proxy + (CRF 2C - CRF 2C1)previous year
PL	Complex calculation	CRF 2C and CRF 2C1 proxy	CRF 2C1 proxy + (CRF 2C - CRF 2C1)previous year
PT	Complex calculation	CRF 2C and CRF 2C1 proxy	CRF 2C1 proxy + (CRF 2C - CRF 2C1)previous year
RO	Complex calculation	CRF 2C and CRF 2C1 proxy	CRF 2C1 proxy + (CRF 2C - CRF 2C1)previous year
SE	Complex calculation	CRF 2C and CRF 2C1 proxy	CRF 2C1 proxy + (CRF 2C - CRF 2C1)previous year
SI	Complex calculation	CRF 2C and CRF 2C1 proxy	CRF 2C1 proxy + (CRF 2C - CRF 2C1)previous year
SK	Complex calculation	CRF 2C and CRF 2C1 proxy	CRF 2C1 proxy + (CRF 2C - CRF 2C1)previous year

Table 73 Methods and data used for CO2 emissions from 2.C Metal production

Source Category 2.C 2.C Metal Production				
Gas	N2O			
Member	Projection Approach	Data Sources	Notes	
State				
AI				
BE				
BG				
CY				
CZ				
DE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
DK				
EE				
ES	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
FI				
FR				
UK	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
GR				
HU				
IE				
IT				
LT				
LU				
LV				
MT				
NL				
PL	Data from previous years	UNFCCC 2011 submission	Value of 2009	
PT				
RO				
SE				
SI				
SK				
0.0	I	I		

Table 74Methods and data used for N_2O emissions from 2.C Metal production

Source Category 2C1 1. I		and Steel Production	
Gas	CO2	I	
Member State	Projection Approach	Data Sources	Notes
AT	Activity trends (dynamics) from other sources	IISI crude steel production (monthly data)	
BE	Activity trends (dynamics) from other sources	IISI blast furnace iron production (monthly data)	
BG	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
CY	Data from previous years	UNFCCC 2011 submission	
CZ	Activity trends (dynamics) from other sources	IISI blast furnace iron production (monthly data)	
DE	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
DK	Data from previous years	UNFCCC 2011 submission	
EE	Data from previous years	UNFCCC 2011 submission	
ES	Emission trends (dynamics) from oth sources	er CITL data (operator holding accounts) 2008-2012	CITL categories iron and bf-gas
FI	Emission trends (dynamics) from oth sources	er CITL data (operator holding accounts) 2008-2012	CITL categories iron and bf-gas
FR	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
UK	Complex calculation	UK Energy Balance	
GR	Emission trends (dynamics) from oth sources	er CITL data (operator holding accounts) 2008-2012	CITL categories coke, ore, iron, bf-gas
HU	Activity trends (dynamics) from other sources	IISI crude steel production (monthly data)	
IE	Data from previous years	UNFCCC 2011 submission	
IT	Activity trends (dynamics) from other sources	IISI crude steel production (monthly data)	
LT	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
LU	Activity trends (dynamics) from other sources	IISI crude steel production (monthly data)	
LV	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
MT	Data from previous years	UNFCCC 2011 submission	
NL	Emission trends (dynamics) from oth sources	er CITL data (operator holding accounts) 2008-2012	CITL categories iron and bf-gas
PL	Activity trends (dynamics) from other sources	IISI blast furnace production (monthly data)	
PT	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
RO	Data from previous years	UNFCCC 2011 submission	Average 2007-2009
SE	Activity trends (dynamics) from other sources	IISI crude steel production (monthly data)	
SI	Activity trends (dynamics) from other sources	IISI crude steel production (monthly data)	
SK	Activity trends (dynamics) from other sources	IISI blast furnace production (monthly data)	

Table 75Methods and data used for CO2 emissions from 2.C.1 Iron and steel production

Source Category 2.D 2.D Other Production			
Gas	CO2		
Member	Brojection Approach	Data Sources	Notos
State		Data Sources	Notes
AT			
BE			
BG			
CY			
CZ			
DE			
DK	Data from previous years	UNFCCC 2011 submission	Value of 2009
EE			
ES			
FI			
FR			
UK			
GR			
HU			
IE			
IT			
LT			
LU			
LV			
MT			
NL	Data from previous years	UNFCCC 2011 submission	Value of 2009
PL	Data from previous years	UNFCCC 2011 submission	Value of 2009
PT	Data from previous years	UNFCCC 2011 submission	value of 2009
RU			
SE			
SI			
SK			

Table 76Methods and data used for CO2 emissions from 2.D Other production

Source Ca	tegory 2.D 2.D Other	Production	
Gas	CH4 N2O		
Member	Projection Approach	Data Sources	Notos
State	Projection Approach	Data Sources	Notes
AT			
BE			
BG			
CY			
CZ			
DE			
DK			
EE			
ES			
FI			
FR			
UK			
GR			
HU			
IE			
IT			
LT			
LU			
LV			
MT			
NL			
PL			
PT			
RO	F (1 / / / / /		
SE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
SI			
SK			

Table 77 Methods and data used for CH_4 and N_2O emissions from 2.D Other production

Source Ca	Source Category 2 2. Industrial Processes		Processes	
Gas	Gas SF6			
Member State	Pro	ojection Approach	Data Sources	Notes
AT	Extrapolation	from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
BE	Data from pre	evious years	UNFCCC 2011 submission	Value of 2009
BG	Extrapolation	from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
CY				
CZ	Data from pre	evious years	UNFCCC 2011 submission	Value of 2009
DE	Extrapolation	from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
DK	Extrapolation	from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
EE	Data from pre	evious years	UNFCCC 2011 submission	Value of 2009
ES	Data from pre	evious years	UNFCCC 2011 submission	Value of 2009
FI	Extrapolation	from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
FR	Extrapolation	from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
UK	Extrapolation	from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
GR	Data from pre	evious years	UNFCCC 2011 submission	Value of 2009
HU	Extrapolation	from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
IE	Extrapolation	from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
IT	Data from pre	evious years	UNFCCC 2011 submission	Value of 2009
LT	Data from pre	evious years	UNFCCC 2011 submission	Value of 2009
LU	Extrapolation	from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
LV	Extrapolation	from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
MT	Extrapolation	from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
NL	Extrapolation	from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
PL	Extrapolation	from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
PT	Extrapolation	from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
RO	Data from pre	evious years	UNFCCC 2011 submission	Value of 2009
SE	Data from pre	evious years	UNFCCC 2011 submission	Value of 2009
SI	Extrapolation	from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
SK	Extrapolation	from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation

Table 78Methods and data used for SF6 emissions

Source C	Source Category 2 2. Industrial Processes				
Gas	Gas HFC				
Member State	Projection Approach	Data Sources	Notes		
AT	Data from previous years	UNFCCC 2011 submission	Value of 2009		
BE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
BG	Data from previous years	UNFCCC 2011 submission	Value of 2009		
CY	Data from previous years	UNFCCC 2011 submission	Value of 2009		
CZ	Data from previous years	UNFCCC 2011 submission	Value of 2009		
DE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
DK	Data from previous years	UNFCCC 2011 submission	Value of 2009		
EE	Data from previous years	UNFCCC 2011 submission	Value of 2009		
ES	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
FI	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
FR	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
UK	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
GR	Data from previous years	UNFCCC 2011 submission	Value of 2009		
HU	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
IE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
IT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
LT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
LU	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
LV	Data from previous years	UNFCCC 2011 submission	Value of 2009		
MT	Data from previous years	UNFCCC 2011 submission	Value of 2009		
NL	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
PL	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
PT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
RO	Data from previous years	UNFCCC 2011 submission	Value of 2009		
SE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
SI	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
SK	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		

Table 79Methods and data used for HFC emissions

Source Category 2 2. Industrial Pro		rocesses	
Gas	PFC		
Member	Projection Approach	Data Sources	Notes
State			
AT	Data from previous years	UNFCCC 2011 submission	Value of 2009
BE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
BG	Data from previous years	UNFCCC 2011 submission	Value of 2009
CY			
CZ	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
DE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
DK	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
EE	Data from previous years	UNFCCC 2011 submission	Value of 2009
ES	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
FI	Data from previous years	UNFCCC 2011 submission	Value of 2009
FR	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
UK	Data from previous years	UNFCCC 2011 submission	Value of 2009
GR	Data from previous years	UNFCCC 2011 submission	Value of 2009
HU	Data from previous years	UNFCCC 2011 submission	Value of 2009
IE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
ΙТ	Data from previous years	UNFCCC 2011 submission	Value of 2009
LT			
LU	Data from previous years	UNFCCC 2011 submission	Value of 2009
LV			
MT	Data from previous years	UNFCCC 2011 submission	Value of 2009
NL	Data from previous years	UNFCCC 2011 submission	Value of 2009
PL	Data from previous years	UNFCCC 2011 submission	Value of 2009
PT	Data from previous years	UNFCCC 2011 submission	Value of 2009
RO	Data from previous years	UNFCCC 2011 submission	Value of 2009
SE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
SI	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
SK	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
•		•	•

Table 80Methods and data used for PFC emissions

Source Ca	Source Category 2.G 2.G Other				
Gas	CO2				
Member	Projection Approach	Data Sources	Notes		
State		Data Cources	Notes		
AT					
BE					
BG					
CY					
CZ					
DE					
DK	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
EE					
ES					
FI					
FR					
UK					
GR					
HU	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
IE					
IT					
LT					
LU					
LV					
MI					
NL	Extrapolation from previous years	UNECCC 2011 submission	linear trend projection via minimum square deviation		
	Extrapolation from previous years	UNFECC 2011 Submission	inear trend projection via minimum square deviation		
3E 91					
SI					
Sn	1	l			

Table 81Methods and data used for CO2 emissions from 2.G Other

Source C	ategory 2.G 2.G Other		
Gas	CH4 N2O		
Member	Projection Approach	Data Sources	Notos
State		Data Sources	Notes
AT			
BE			
BG			
CY			
CZ			
DE			
DK			
EE			
ES			
FI			
FR			
UK			
GR			
HU			
IE			
IT			
LT			
LU			
LV			
MT			
NL	Data from previous years	UNFCCC 2011 submission	Value of 2009
PL			
PT			
RO			
SE			
SI			
SK			

Table 82Methods and data used for CH_4 and N_2O emissions from 2.G Other

Source Category 3 3. Solvent and		nt and Other Product Use	
Gas CO2			
Member State	Projection Approach	Data Sources	Notes
AT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
BE			
BG	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
CY	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
CZ	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
DE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
DK	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
EE	Data from previous years	UNFCCC 2011 submission	Value of 2009
ES	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
FI	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
FR	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
UK			
GR	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
HU	Data from previous years	UNFCCC 2011 submission	Value of 2009
IE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
IT	Data from previous years	UNFCCC 2011 submission	Value of 2009
LT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
LU	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
LV	Data from previous years	UNFCCC 2011 submission	Value of 2009
MT			
NL	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
PL	Data from previous years	UNFCCC 2011 submission	Value of 2009
PT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
RO	Data from previous years	UNFCCC 2011 submission	Value of 2009
SE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
SI			
SK	Data from previous years	UNFCCC 2011 submission	Value of 2009

Table 83Methods and data used for CO2 emissions from 3 Solvent and other product use

Source C	Source Category 3 3. Solvent and Other Product Use			
Gas	Gas N2O			
Member State	Projection Approach	Data Sources	Notes	
AT	Data from previous years	UNFCCC 2011 submission	Value of 2009	
BE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
BG	Data from previous years	UNFCCC 2011 submission	Value of 2009	
CY				
CZ	Data from previous years	UNFCCC 2011 submission	Value of 2009	
DE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
DK	Data from previous years	UNFCCC 2011 submission	Value of 2009	
EE				
ES	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
FI	Data from previous years	UNFCCC 2011 submission	Value of 2009	
FR	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
UK				
GR	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
HU	Data from previous years	UNFCCC 2011 submission	Value of 2009	
IE				
IT	Data from previous years	UNFCCC 2011 submission	Value of 2009	
LT				
LU	Data from previous years	UNFCCC 2011 submission	Value of 2009	
LV	Data from previous years	UNFCCC 2011 submission	Value of 2009	
MT	Data from previous years	UNFCCC 2011 submission	Value of 2009	
NL	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
PL	Data from previous years	UNFCCC 2011 submission	Value of 2009	
PT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
RO				
SE	Data from previous years	UNFCCC 2011 submission	Value of 2009	
SI	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
SK	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	

Table 84Methods and data used for N2O emissions from 3 Solvent and other product used

Source Cat Gas	Source Category 4.A, 4.B A. Enteric Fermentation, 4.B Manure Management: Gas CH4 Dairy Cattle, Non-dairy Cattle, Sheep, Goats, Swine			
Member State	Projection Approach	Data Sources	Notes	
AT			Dairy cattle, Non-dairy cattle, Sheep, Goats, Swine: EUROSTAT December survey	
BE			Dairy cattle: EUROSTAT December survey; Non-dairy cattle, Goats, Swine: EUROSTAT June survey; Sheep: EUROSTAT June survey plus adjustment factor	
BG			Dairy cattle, Non-dairy cattle, Sheep, Goats, Swine: EUROSTAT December survey	
CY			Dairy cattle, Non-dairy cattle, Swine: EUROSTAT December survey; Sheep, Goats: EUROSTAT December survey plus adjustment factor	
CZ			Dairy cattle, Non-dairy cattle: EUROSTAT December survey plus adjustment factor; Swine: EUROSTAT December survey; Sheep, Goats: EUROSTAT December survey with extrapolation for 2010 plus adjustment factor for Goats	
DE			Dairy cattle, Non-dairy cattle, Sheep: EUROSTAT June survey; Swine: EUROSTAT December survey plus adjustment factor; Goats: EUROSTAT December survey extrapolation for 2010	
DK			Dairy cattle, Swine: EUROSTAT June survey; Non-dairy cattle: EUROSTAT December survey; Sheep: EUROSTAT December survey with extrapolation for 2010 plus adjustment factor, Goats: no population data available, extrapolation of UNFCCC CH4 emissions	
EE			Dairy cattle, Non-dairy cattle, Swine: EUROSTAT December survey; Sheep, Goats: EUROSTAT December survey with extrapolation for 2010 plus adjustment factor	
ES		Livestock activity data (Dairy cattle, Non-dairy cattle, Sheep, Goats, Swine) from EUROSTAT, IEF from UNFCCC 2009 inventories	Dairy cattle: EUROSTAT June survey; Non-dairy cattle, Sheep, Goats, Swine: EUROSTAT December survey	
FI			Dairy cattle, Non-dairy cattle, Swine: EUROSTAT December survey; Sheep, Goats: EUROSTAT December survey with extrapolation for 2010 plus adjustment factor for Sheep	
FR			Dairy cattle, Sheep, Goats: EUROSTAT December survey; Non-dairy cattle, Swine: EUROSTAT June survey plus adjustment factor for Swine	
UK			EUROSTAT December survey plus adjustment factor; Goats: no population data available, extrapolation of UNFCCC CH4 emissions	
GR	Emissions calculation based on activity data		Dairy cattle, Non-dairy cattle, Goats, Sheep EUROSTAT December survey; Swine EUROSTAT December survey plus adjustment factor;	
HU			Dairy cattle, Non-dairy cattle, Sheep, Swine: EUROSTAT December survey; Goats: EUROSTAT December survey plus adjustment factor	
IE				
IT			Dairy cattle, Sheep, Goats, Swine: EUROSTAT December survey; Non-dairy cattle: EUROSTAT June survey	
LT			Dairy cattle, Non-dairy cattle, Goats, Sneep, Swine: EUROSTAT December survey	
LU			cattle, Swine, Sheep, Goats: EUROSTAT December survey	
LV			survey with extrapolation for 2010 for Goats	
MT			Dairy cattle, Non-dairy cattle, Sheep, Goats, Swine: EUROSTAT December survey	
NL			EUROSTAT December survey; Goats: EUROSTAT December survey plus adjustment factor	
PL			Dairy cattle: EUROSTAT June survey; Non-dairy cattle, Goats, Swine: EUROSTAT December survey; Sheep: EUROSTAT December survey plus adjustment factor:	
PT			Dairy cattle, Non-dairy cattle, Sheep, Swine, Goats: EUROSTAT December survey	
RO			Dairy cattle, Non-dairy cattle, Sheep, Swine, Goats: EUROSTAT December survey	
SE			Darry cattle, Non-dairy cattle, Swine: EUROSTAT June survey; Sheep: EUROSTAT December survey plus adjustment factor; Goats: no population data available, extrapolation of UNFCCC CH4 emissions	
SI			Dairy cattle, Non-dairy cattle, Swine: EUROSTAT December survey; Sheep, Goats: EUROSTAT December survey with extrapolation for 2010	
SK			Dairy cattle, Non-dairy cattle: EUROSTAT December survey plus adjustment factor; Swine, Sheep, Goats: EUROSTAT December survey	

Table 85Methods and data used for CH4 emissions from 4.A. Enteric fermentation and from 4.BManure management

Source Ca	Source Category 4.B B. Manure Management				
Gas	Gas N2O				
Member State	Projection Approach	Data Sources	Notes		
AT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
BE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
BG	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
CY	Data from previous years	UNFCCC 2011 submission	Value of 2009		
CZ	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
DE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
DK	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
EE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
ES	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
FI	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
FR	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
UK	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
GR	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
HU	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
IE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
IT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
LT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
LU	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
LV	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
MT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
NL	Data from previous years	UNFCCC 2011 submission	Value of 2009		
PL	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
PT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
RO	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
SE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
SI	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
SK	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		

Table 86	Methods and data used for N_2O emissions from 4.B Manure management
----------	---

Source Ca	Source Category 4.C C. Rice cultivation				
Gas	CH4				
Member	Projection Approach	Data Sources	Notes		
State		Data Sources	Notes		
AT					
BE					
BG	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
CY					
CZ					
DE					
DK					
EE					
ES	Data from previous years	UNFCCC 2011 submission	Value of 2009		
FI					
FR	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
UK					
GR	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
HU	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
IE					
IT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
LT					
LU					
LV					
MT					
NL					
PL					
PT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
RO	Extrapolation from previous years	UNECCC 2011 submission	linear trend projection via minimum square deviation		
SE					
SI					
SK					

Table 87Methods and data used for CH4 emissions from 4.C Rice cultivation

Source Ca	tegory 4.D D. Agricultural Soils		
Gas	CH4		
Member	Projection Approach	Data Sources	Notos
State		Data Sources	Notes
AT	Data from previous years	UNFCCC 2011 submission	Value of 2009
BE			
BG			
CY			
CZ			
DE			
DK			
EE			
ES			
FI			
FR			
UK			
GR			
HU			
IE			
IT			
LT			
LU			
LV			
MT			
NL			
PL			
PT			
RO			
SE			
SI			
SK			

ils
i

Source Category 4.D.1.1 1. Synthetic Fertilizers				
Gas	Gas N2O			
Member	Projection Approach	Data Sources	Notes	
State		Data Sources	Notes	
AT	Data from previous years	UNFCCC 2011 submission	Value of 2009	
BE	Data from previous years	UNFCCC 2011 submission	Value of 2009	
BG	Data from previous years	UNFCCC 2011 submission	Value of 2009	
CY	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
CZ	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
DE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
DK	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
EE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
ES	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
FI	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
FR	Data from previous years	UNFCCC 2011 submission	Value of 2009	
UK	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
GR	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
HU	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
IE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
IT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
LT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
LU	Data from previous years	UNFCCC 2011 submission	Value of 2009	
LV	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
MT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
NL	Data from previous years	UNFCCC 2011 submission	Value of 2009	
PL	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
PT	Data from previous years	UNFCCC 2011 submission	Value of 2009	
RO	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
SE	Data from previous years	UNFCCC 2011 submission	Value of 2009	
SI	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
SK	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	

Table 89Methods and data used for N2O emissions from 4.D.1.1 Synthetic fertilizer

Source Category 4.D.1.2 2. Animal Manure Applied to Soils				
Gas	Gas N2O			
Member State	Projection Approach	Data Sources	Notes	
AT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
BE	Data from previous years	UNFCCC 2011 submission	Value of 2009	
BG	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
CY	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
CZ	Data from previous years	UNFCCC 2011 submission	Value of 2009	
DE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
DK	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
EE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
ES	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
FI	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
FR	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
UK	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
GR	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
HU	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
IE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
IT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
LT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
LU	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
LV	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
MT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
NL	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
PL	Data from previous years	UNFCCC 2011 submission	Value of 2009	
PT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
RO	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
SE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
SI	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
SK	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	

Table 90Methods and data used for N2O emissions from 4.D.1.2 Animal manure applied to soil

Table 91 Methods and data used for N ₂ O emis	ssions from 4.D.1.3 N-fixing crops
--	------------------------------------

Source Category 4.D.1.3 3. N-fixing Crops			
Gas	N2O		
Member	Projection Approach	Data Sources	Notes
State		Data Sources	Notes
AT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
BE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
BG	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
CY	Data from previous years	UNFCCC 2011 submission	Value of 2009
CZ	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
DE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
DK	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
EE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
ES	Data from previous years	UNFCCC 2011 submission	Value of 2009
FI	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
FR	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
UK	Data from previous years	UNFCCC 2011 submission	Value of 2009
GR	Data from previous years	UNFCCC 2011 submission	Value of 2009
HU	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
IE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
IT	Data from previous years	UNFCCC 2011 submission	Value of 2009
LT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
LU	Data from previous years	UNFCCC 2011 submission	Value of 2009
LV	Data from previous years	UNFCCC 2011 submission	Value of 2009
MT			
NL	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
PL	Data from previous years	UNFCCC 2011 submission	Value of 2009
PT	Data from previous years	UNFCCC 2011 submission	Value of 2009
RO	Data from previous years	UNFCCC 2011 submission	Value of 2009
SE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
SI	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
SK	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation

Source Category 4.D.1.4 4. Crop Residues				
Gas	Gas N2O			
Member State	Projection Approach	Data Sources	Notes	
AT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
BE	Data from previous years	UNFCCC 2011 submission	Value of 2009	
BG	Data from previous years	UNFCCC 2011 submission	Value of 2009	
CY	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
CZ	Data from previous years	UNFCCC 2011 submission	Value of 2009	
DE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
DK	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
EE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
ES	Data from previous years	UNFCCC 2011 submission	Value of 2009	
FI	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
FR	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
UK	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
GR	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
HU	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
IE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
IT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
LT	Data from previous years	UNFCCC 2011 submission	Value of 2009	
LU	Data from previous years	UNFCCC 2011 submission	Value of 2009	
LV	Data from previous years	UNFCCC 2011 submission	Value of 2009	
MT				
NL	Data from previous years	UNFCCC 2011 submission	Value of 2009	
PL	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
PT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
RO	Data from previous years	UNFCCC 2011 submission	Value of 2009	
SE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
SI	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
SK	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	

Table 92Methods and data used for N2O emissions from 4.D.1.4 Crop residues

Table 93	Methods and data used	for N ₂ O emissions	from 4.D.1.5 Cultivation o	f histosols
		/		/

Source Category 4.D.1.5 5. Cultivation of Histosols				
Gas N2O				
Member	Projection Approach	Data Sources	Notos	
State		Data Sources	Notes	
AT				
BE	Data from previous years	UNFCCC 2011 submission	Value of 2009	
BG				
CY				
CZ				
DE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
DK	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
EE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
ES				
FI	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
FR				
UK	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
GR	Data from previous years	UNFCCC 2011 submission	Value of 2009	
HU				
IE				
IT	Data from previous years	UNFCCC 2011 submission	Value of 2009	
LT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
LU				
LV	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
MT				
NL	Data from previous years	UNFCCC 2011 submission	Value of 2009	
PL	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
PT				
RO	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
SE	Data from previous years	UNFCCC 2011 submission	Value of 2009	
SI	Data from previous years	UNFCCC 2011 submission	Value of 2009	
SK				

Source Category 4.D.1.6 6. Other direct emissions			
Gas	N2O		
Member	Projection Approach	Data Sources	Notes
State			
AT	Data from previous years	UNFCCC 2011 submission	Value of 2009
BE			
BG	Data from previous years	UNFCCC 2011 submission	Value of 2009
CY			
CZ			
DE	Data from previous years	UNFCCC 2011 submission	Value of 2009
DK	Data from previous years	UNFCCC 2011 submission	Value of 2009
EE	Data from previous years	UNFCCC 2011 submission	Value of 2009
ES	Data from previous years	UNFCCC 2011 submission	Value of 2009
FI	Data from previous years	UNFCCC 2011 submission	Value of 2009
FR	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
UK			
GR	Data from previous years	UNFCCC 2011 submission	Value of 2009
HU			
IE			
IT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
LT			
LU	Data from previous years	UNFCCC 2011 submission	Value of 2009
LV			
MT			
NL			
PL	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
PT			
RO			
SE	Data from previous years	UNFCCC 2011 submission	Value of 2009
SI			
SK			

Table 94Methods and data used for N2O emissions from 4.D.1.6 Other

Table 95Methods and data used for N	20 emissions from 4.D.2 Pasture,	, Range and Paddock Manure
-------------------------------------	----------------------------------	----------------------------

Source Category 4.D.2 2. Pasture, Range and Paddock Manure			
Gas N2O			
Member	Projection Approach	Data Sources	Notes
State		Data cources	Notes
AT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
BE	Data from previous years	UNFCCC 2011 submission	Value of 2009
BG	Data from previous years	UNFCCC 2011 submission	Value of 2009
CY	Data from previous years	UNFCCC 2011 submission	Value of 2009
CZ	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
DE	Data from previous years	UNFCCC 2011 submission	Value of 2009
DK	Data from previous years	UNFCCC 2011 submission	Value of 2009
EE	Data from previous years	UNFCCC 2011 submission	Value of 2009
ES	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
FI	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
FR	Data from previous years	UNFCCC 2011 submission	Value of 2009
UK	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
GR	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
HU	Data from previous years	UNFCCC 2011 submission	Value of 2009
IE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
IT	Data from previous years	UNFCCC 2011 submission	Value of 2009
LT	Data from previous years	UNFCCC 2011 submission	Value of 2009
LU	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
LV	Data from previous years	UNFCCC 2011 submission	Value of 2009
MT			
NL	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
PL	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
PT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
RO	Data from previous years	UNFCCC 2011 submission	Value of 2009
SE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation
SI	Data from previous years	UNFCCC 2011 submission	Value of 2009
SK	Data from previous years	UNFCCC 2011 submission	Value of 2009

Source Category 4.D.3 3. Indirect Emissions				
Gas	Gas N2O			
Member	Projection Approach	Data Sources	Notes	
State				
AT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
BE	Data from previous years	UNFCCC 2011 submission	Value of 2009	
BG	Data from previous years	UNFCCC 2011 submission	Value of 2009	
CY				
CZ	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
DE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
DK	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
EE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
ES	Data from previous years	UNFCCC 2011 submission	Value of 2009	
FI	Data from previous years	UNFCCC 2011 submission	Value of 2009	
FR	Data from previous years	UNFCCC 2011 submission	Value of 2009	
UK	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
GR	Data from previous years	UNFCCC 2011 submission	Value of 2009	
HU	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
IE	Data from previous years	UNFCCC 2011 submission	Value of 2009	
IT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
LT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
LU	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
LV	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
MT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
NL	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
PL	Data from previous years	UNFCCC 2011 submission	Value of 2009	
PT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
RO	Data from previous years	UNFCCC 2011 submission	Value of 2009	
SE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
SI	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
SK	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	

Table 96Methods and data used for N2O emissions from 4.D.3 Indirect emissions

Table 97Methods and data used for N2O emissions from 4.D.4 Other

Source Category 4.D.4 4. Other			
Gas	N2O		
Member	Brainstion Approach	Data Sources	Notos
State		Data Sources	Notes
AT			
BE	Data from previous years	UNFCCC 2011 submission	Value of 2009
BG			
CY			
CZ			
DE			
DK			
EE			
ES			
FI			
FR			
UK	Data from previous years	UNFCCC 2011 submission	Value of 2009
GR			
HU			
IE			
IT			
LT			
LU			
LV			
MI			
NL	Data from previous years	UNFCCC 2011 submission	Value of 2009
PL			
RO	Data farm ann iana na an		Value of 2000
SE	Data from previous years	UNFCCC 2011 SUBMISSION	value of 2009
SI			
SK			

GasCH4Member StateProjection ApproachData SourcesNotesAT BE BGData from previous yearsUNFCCC 2011 submission UNFCCC 2011 submissionValue of 2009CY Data from previous yearsUNFCCC 2011 submission UNFCCC 2011 submissionValue of 2009CY DE DKExtrapolation from previous years EE Extrapolation from previous yearsUNFCCC 2011 submission UNFCCC 2011 submissionValue of 2009DKExtrapolation from previous years ES Data from previous yearsUNFCCC 2011 submission UNFCCC 2011 submission UNFCCC 2011 submissionlinear trend projection via minimum square deviation linear trend projection via minimum square deviation UNFCCC 2011 submission UNFCCC 2011 submissionValue of 2009FR UK GR GR Extrapolation from previous yearsUNFCCC 2011 submission UNFCCC 2011 submissionlinear trend projection via minimum square deviation linear trend projection via minimum square deviation linear trend projection via minimum square deviationHU IE IT UK UV NTData from previous yearsUNFCCC 2011 submissionlinear trend projection via minimum square deviation linear trend projection via minimum square deviationVAlue IE IT UV NTData from previous yearsUNFCCC 2011 submissionlinear trend projection via minimum square deviationVAlue IE IT Data from previous yearsUNFCCC 2011 submissionlinear trend projection via minimum square deviationVAlue IE IT Data from previous yearsUNFCCC 2011 submissionValue of 2009VAlue of 2009Value of 2009	Source C	Source Category 4.F F. Field Burning of Agricultural Residues			
Member StateProjection ApproachData SourcesNotesAT BE BGData from previous yearsUNFCCC 2011 submissionValue of 2009BG CY DE DE DKData from previous yearsUNFCCC 2011 submission UNFCCC 2011 submissionValue of 2009CZ DE DKExtrapolation from previous yearsUNFCCC 2011 submission UNFCCC 2011 submissionValue of 2009CZ DE DKExtrapolation from previous yearsUNFCCC 2011 submission UNFCCC 2011 submissionlinear trend projection via minimum square deviation linear trend projection via minimum square deviation UNFCCC 2011 submissionFI EXtrapolation from previous yearsUNFCCC 2011 submission UNFCCC 2011 submissionlinear trend projection via minimum square deviation linear trend projection via minimum square deviation linear trend projection via minimum square deviation linear trend projection via minimum square deviationFR UK GR E IT IE IT Data from previous yearsUNFCCC 2011 submission UNFCCC 2011 submissionlinear trend projection via minimum square deviation linear trend projection via minimum square deviation linear trend projection via minimum square deviation linear trend projection via minimum square deviationIL IL UL UV LV NT NL PL PLExtrapolation from previous yearsUNFCCC 2011 submission UNFCCC 2011 submissionValue of 2009IL IL PL PLExtrapolation from previous yearsUNFCCC 2011 submission UNFCCC 2011 submissionValue of 2009Value of 2009Value of 2009Value of 2009IL PL PLExtrapolation from previous	Gas	CH4			
StateData from previous yearsUNFCCC 2011 submissionValue of 2009BGData from previous yearsUNFCCC 2011 submissionValue of 2009CYData from previous yearsUNFCCC 2011 submissionValue of 2009CZDEUNFCCC 2011 submissionValue of 2009DEExtrapolation from previous yearsUNFCCC 2011 submissionInear trend projection via minimum square deviationESData from previous yearsUNFCCC 2011 submissionUNFCCC 2011 submissionFIExtrapolation from previous yearsUNFCCC 2011 submissionValue of 2009FRUNFCCC 2011 submissionUNFCCC 2011 submissionInear trend projection via minimum square deviationVKGRExtrapolation from previous yearsUNFCCC 2011 submissionInear trend projection via minimum square deviationHUIEData from previous yearsUNFCCC 2011 submissionInear trend projection via minimum square deviationHUIEData from previous yearsUNFCCC 2011 submissionValue of 2009LTData from previous yearsUNFCCC 2011 submissionValue of 2009LULVUNFCCC 2011 submissionValue of 2009PTData from previous yearsUNFCCC 2011 submissionValue of 2009Value of 2009Value of 2	Member	Projection Approach	Data Sources	Notes	
ATData from previous yearsUNFCCC 2011 submissionValue of 2009BEData from previous yearsUNFCCC 2011 submissionValue of 2009CYData from previous yearsUNFCCC 2011 submissionValue of 2009DEDKExtrapolation from previous yearsUNFCCC 2011 submissionValue of 2009DKExtrapolation from previous yearsUNFCCC 2011 submissionInear trend projection via minimum square deviationEEExtrapolation from previous yearsUNFCCC 2011 submissionInear trend projection via minimum square deviationFIExtrapolation from previous yearsUNFCCC 2011 submissionValue of 2009IKExtrapolation from previous yearsUNFCCC 2011 submissionValue of 2009IKGRExtrapolation from previous yearsUNFCCC 2011 submissionInear trend projection via minimum square deviationHUIFData from previous yearsUNFCCC 2011 submissionInear trend projection via minimum square deviationHUIFData from previous yearsUNFCCC 2011 submissionValue of 2009ITLUUNFCCC 2011 submissionValue of 2009LVITData from previous yearsUNFCCC 2011 submissionValue of 2009LVPLExtrapolation from previous yearsUNFCCC 2011 submissionValue of 2009PTData from previous yearsUNFCCC 2011 submissionInear trend projection via minimum square deviationNLPLExtrapolation from previous yearsUNFCCC 2011 submissionValue of 2009PTData f	State				
BE BG CY Data from previous yearsUNFCCC 2011 submission UNFCCC 2011 submissionValue of 2009 Value of 2009CZ DE DKExtrapolation from previous years Extrapolation from previous years EXtrapolation from previous years FR UK GR IFUNFCCC 2011 submission UNFCCC 2011 submissionValue of 2009 UNE Value of 2009FR UK GR E TData from previous yearsUNFCCC 2011 submission UNFCCC 2011 submissionlinear trend projection via minimum square deviation Value of 2009IT LU LV NT NL PL PLExtrapolation from previous yearsUNFCCC 2011 submission UNFCCC 2011 submissionValue of 2009IT LU LV NT NL PLExtrapolation from previous yearsUNFCCC 2011 submission UNFCCC 2011 submissionValue of 2009Inear trend projection via minimum square deviation Value of 2009Value of 2009	AT	Data from previous years	UNFCCC 2011 submission	Value of 2009	
BGData from previous yearsUNFCCC 2011 submissionValue of 2009CYData from previous yearsUNFCCC 2011 submissionValue of 2009CZDEUNFCCC 2011 submissionValue of 2009DKExtrapolation from previous yearsUNFCCC 2011 submissionlinear trend projection via minimum square deviationEEExtrapolation from previous yearsUNFCCC 2011 submissionlinear trend projection via minimum square deviationFRExtrapolation from previous yearsUNFCCC 2011 submissionlinear trend projection via minimum square deviationFRUKUNFCCC 2011 submissionlinear trend projection via minimum square deviationUKExtrapolation from previous yearsUNFCCC 2011 submissionlinear trend projection via minimum square deviationHUIEITData from previous yearsUNFCCC 2011 submissionlinear trend projection via minimum square deviationHUIEITData from previous yearsUNFCCC 2011 submissionValue of 2009LTLUIIIIIIIIData from previous yearsUNFCCC 2011 submissionValue of 2009LVMTII	BE				
CY CZ DEData from previous yearsUNFCCC 2011 submissionValue of 2009DK DK EXtrapolation from previous yearsUNFCCC 2011 submissionlinear trend projection via minimum square deviationEE EXtrapolation from previous yearsUNFCCC 2011 submissionlinear trend projection via minimum square deviationES FI UK GR HU HU IE ITExtrapolation from previous yearsUNFCCC 2011 submissionValue of 2009Inear trend projection via minimum square deviationValue of 2009linear trend projection via minimum square deviationFR UK GR HU IE ITData from previous yearsUNFCCC 2011 submissionlinear trend projection via minimum square deviationIT LU LV MT NL PTExtrapolation from previous yearsUNFCCC 2011 submissionValue of 2009IT Data from previous yearsUNFCCC 2011 submissionValue of 2009IT LU LV NL PTExtrapolation from previous yearsUNFCCC 2011 submissionValue of 2009IT Data from previous yearsUNFCCC 2011 submissionValue of 2009Inear trend projection via minimum square deviationNL PTExtrapolation from previous yearsUNFCCC 2011 submissionValue of 2009Inear trend projection via minimum square deviationVALUE of 2009Inear trend projection via minimum square deviation <td>BG</td> <td>Data from previous years</td> <td>UNFCCC 2011 submission</td> <td>Value of 2009</td>	BG	Data from previous years	UNFCCC 2011 submission	Value of 2009	
CZ DE DKExtrapolation from previous yearsUNFCCC 2011 submission UNFCCC 2011 submissionlinear trend projection via minimum square deviation linear trend projection via minimum square deviation UNFCCC 2011 submissionEE E E E TR UK GRExtrapolation from previous yearsUNFCCC 2011 submission UNFCCC 2011 submissionlinear trend projection via minimum square deviation linear trend projection via minimum square deviation Value of 2009FR UK GR GR HU IE IT LU LV NT PL PL PTExtrapolation from previous yearsUNFCCC 2011 submission UNFCCC 2011 submissionlinear trend projection via minimum square deviation Value of 2009VAlue of 2009 UNFCCC 2011 submissionInear trend projection via minimum square deviation Value of 2009VAlue of 2009 UNFCCC 2011 submissionValue of 2009IE IT UNFCCC 2011 submissionUNFCCC 2011 submissionValue of 2009IE UNFCCC 2011 submissionValue of 2009IT LU V NT NL PTExtrapolation from previous yearsUNFCCC 2011 submissionValue of 2009IT Data from previous yearsUNFCCC 2011 submission UNFCCC 2011 submissionValue of 2009	CY	Data from previous years	UNFCCC 2011 submission	Value of 2009	
DE DKExtrapolation from previous yearsUNFCCC 2011 submission UNFCCC 2011 submissionlinear trend projection via minimum square deviation linear trend projection via minimum square deviation linear trend projection via minimum square deviationEEExtrapolation from previous yearsUNFCCC 2011 submission UNFCCC 2011 submissionlinear trend projection via minimum square deviation linear trend projection via minimum square deviationFRUKUNFCCC 2011 submissionValue of 2009GRExtrapolation from previous yearsUNFCCC 2011 submissionlinear trend projection via minimum square deviationHUIEIIData from previous yearsUNFCCC 2011 submissionlinear trend projection via minimum square deviationLTLULVValue of 2009IILULVValue of 2009IILTData from previous yearsUNFCCC 2011 submissionValue of 2009LTLUValue of 2009Value of 2009LVVAlue of 2009Value of 2009PLExtrapolation from previous yearsUNFCCC 2011 submissionValue of 2009PTData from previous yearsUNFCCC 2011 submissionValue of 2009	CZ				
DKExtrapolation from previous yearsUNFCCC 2011 submissionlinear trend projection via minimum square deviationEEExtrapolation from previous yearsUNFCCC 2011 submissionlinear trend projection via minimum square deviationESData from previous yearsUNFCCC 2011 submissionValue of 2009FIExtrapolation from previous yearsUNFCCC 2011 submissionValue of 2009FRUNFCCC 2011 submissionlinear trend projection via minimum square deviationGRExtrapolation from previous yearsUNFCCC 2011 submissionlinear trend projection via minimum square deviationHUIEIIIData from previous yearsUNFCCC 2011 submissionlinear trend projection via minimum square deviationLTLULVValue of 2009IIILULVValue of 2009IIILVLVValue of 2009LTLUValue of 2009LVLVValue of 2009PLExtrapolation from previous yearsUNFCCC 2011 submissionValue of 2009PLExtrapolation from previous yearsUNFCCC 2011 submissionValue of 2009PTData from previous yearsUNFCCC 2011 submissionIIIPTData from previous yearsUNFCCC 2011 submissionValue of 2009	DE				
EEExtrapolation from previous yearsUNFCCC 2011 submissionlinear trend projection via minimum square deviationESData from previous yearsUNFCCC 2011 submissionValue of 2009FRExtrapolation from previous yearsUNFCCC 2011 submissionlinear trend projection via minimum square deviationFRUKUNFCCC 2011 submissionlinear trend projection via minimum square deviationGRExtrapolation from previous yearsUNFCCC 2011 submissionlinear trend projection via minimum square deviationHUIEIIIData from previous yearsUNFCCC 2011 submissionlinear trend projection via minimum square deviationLTLUUNFCCC 2011 submissionValue of 2009linear trend projection via minimum square deviationLVMTUNFCCC 2011 submissionValue of 2009LVLVValue of 2009linear trend projection via minimum square deviationNLPLExtrapolation from previous yearsUNFCCC 2011 submissionValue of 2009PTData from previous yearsUNFCCC 2011 submissionValue of 2009PTData from previous yearsUNFCCC 2011 submissionValue of 2009	DK	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
ESData from previous yearsUNFCCC 2011 submissionValue of 2009FIExtrapolation from previous yearsUNFCCC 2011 submissionInear trend projection via minimum square deviationFRUKUNFCCC 2011 submissionInear trend projection via minimum square deviationGRExtrapolation from previous yearsUNFCCC 2011 submissionInear trend projection via minimum square deviationHUIEITData from previous yearsUNFCCC 2011 submissionValue of 2009LTLUUNFCCC 2011 submissionValue of 2009LVMTValue of 2009NLPLExtrapolation from previous yearsUNFCCC 2011 submissionValue of 2009PTData from previous yearsUNFCCC 2011 submissionValue of 2009Value of 2009Value of 2009Value of 2009	EE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
FIExtrapolation from previous yearsUNFCCC 2011 submissionlinear trend projection via minimum square deviationFRUKUKInear trend projection via minimum square deviationGRExtrapolation from previous yearsUNFCCC 2011 submissionlinear trend projection via minimum square deviationHUIEInear trend projection via minimum square deviationInear trend projection via minimum square deviationHUIIData from previous yearsUNFCCC 2011 submissionValue of 2009LTLULVValue of 2009Inear trend projection via minimum square deviationNLPLExtrapolation from previous yearsUNFCCC 2011 submissionInear trend projection via minimum square deviationPTData from previous yearsUNFCCC 2011 submissionInear trend projection via minimum square deviationValue of 2009Value of 2009	ES	Data from previous years	UNFCCC 2011 submission	Value of 2009	
FR UK UK GR Extrapolation from previous years UNFCCC 2011 submission HU IE IT Data from previous years LT UNFCCC 2011 submission LU Value of 2009 VIT NL PL Extrapolation from previous years UNFCCC 2011 submission Value of 2009	FI	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
UK GR Extrapolation from previous years UNFCCC 2011 submission linear trend projection via minimum square deviation HU IE Data from previous years UNFCCC 2011 submission Value of 2009 LT UV Value of 2009 Value of 2009 LT UV Value of 2009 Value of 2009 LT UV Value of 2009 Value of 2009 LV Value of 2009 Value of 2009 PL Extrapolation from previous years UNFCCC 2011 submission Value of 2009 PT Data from previous years UNFCCC 2011 submission Value of 2009	FR				
GR Extrapolation from previous years UNFCCC 2011 submission linear trend projection via minimum square deviation HU IE Data from previous years UNFCCC 2011 submission Value of 2009 LT LU Value of 2009 Value of 2009 PL Extrapolation from previous years UNFCCC 2011 submission Value of 2009 PT Data from previous years UNFCCC 2011 submission Value of 2009	UK				
HU IE IE IT IT Data from previous years LT UNFCCC 2011 submission LU Value of 2009 LV Value of 2009 NL Value of 2009 PL Extrapolation from previous years UNFCCC 2011 submission VPT Data from previous years UNFCCC 2011 submission Value of 2009 Value of 2009	GR	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
IE IT Data from previous years UNFCCC 2011 submission Value of 2009 LT U UNFCCC 2011 submission Value of 2009 LU U UNFCCC 2011 submission Value of 2009 LV UNFCCC 2011 submission Value of 2009 NL UNFCCC 2011 submission Inear trend projection via minimum square deviation PL Extrapolation from previous years UNFCCC 2011 submission Inear trend projection via minimum square deviation PT Data from previous years UNFCCC 2011 submission Value of 2009	HU				
IT Data from previous years UNFCCC 2011 submission Value of 2009 LT LU LU <td< td=""><td>IE</td><td></td><td></td><td></td></td<>	IE				
LT LU LU LU LV Image: Constraint of the second	IT	Data from previous years	UNFCCC 2011 submission	Value of 2009	
LU LU LV NT MT NL PL Extrapolation from previous years UNFCCC 2011 submission PT Data from previous years UNFCCC 2011 submission	LT				
LV MT MT Image: NL PL Extrapolation from previous years UNFCCC 2011 submission PT Data from previous years UNFCCC 2011 submission Value of 2009 Value of 2009	LU				
MT NL PL Extrapolation from previous years UNFCCC 2011 submission PT Data from previous years UNFCCC 2011 submission Value of 2009	LV				
NL Extrapolation from previous years UNFCCC 2011 submission linear trend projection via minimum square deviation PT Data from previous years UNFCCC 2011 submission Value of 2009	MT				
PL Extrapolation from previous years UNFCCC 2011 submission linear trend projection via minimum square deviation PT Data from previous years UNFCCC 2011 submission Value of 2009	NL				
PT Data from previous years UNFCCC 2011 submission Value of 2009	PL	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
	PT	Data from previous years	UNFCCC 2011 submission	Value of 2009	
RO	RO				
SE	SE				
SI	SI				
SK	SK				

Table 98	Methods and	data used for	r CH4 emissions	from 4.F Field	d burning oj	f agricultural	residues
				2			

Table 99Methods and data used for N2O emissions from 4.F Field burning of agricultural residues

Source Ca	Source Category 4.F F. Field Burning of Agricultural Residues			
Gas	N2O			
Member	Projection Approach	Data Sources	Notes	
State			Notes	
AT	Data from previous years	UNFCCC 2011 submission	Value of 2009	
BE				
BG	Data from previous years	UNFCCC 2011 submission	Value of 2009	
CY	Data from previous years	UNFCCC 2011 submission	Value of 2009	
CZ				
DE				
DK	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
EE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
ES	Data from previous years	UNFCCC 2011 submission	Value of 2009	
FI	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
FR				
UK				
GR	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
HU				
IE				
IT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
LT				
LU				
LV				
MT				
NL				
PL	Data from previous years	UNFCCC 2011 submission	Value of 2009	
PT	Data from previous years	UNFCCC 2011 submission	Value of 2009	
RO				
SE				
SI				
SK			1	

Source Ca	Source Category 6A A. Solid Waste Disposal on Land			
Gas	CO2			
Member	Projection Approach	Data Sources	Notes	
State				
AT				
BE				
BG				
CY				
CZ				
DE				
DK				
EE				
ES	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
FR				
UK				
GR				
HU				
11				
NI				
PI				
PT				
RO				
SE				
SL				
SK				

Table 100Methods and data used for CO2 emissions from 6.A Solid waste disposal on land

Source Cat	Source Category 6A A. Solid Waste Disposal on Land			
Gas	CH4			
Member	Projection Approach	Data Sources	Notes	
State		Data Cources	Notes	
AT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
BE	Data from previous years	UNFCCC 2011 submission	Value of 2009	
BG	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
CY	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
CZ	Data from previous years	UNFCCC 2011 submission	Value of 2009	
DE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
DK	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
EE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
ES	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
FI	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
FR	Data from previous years	UNFCCC 2011 submission	Value of 2009	
UK	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
GR	Data from previous years	UNFCCC 2011 submission	Value of 2009	
HU	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
IE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
IT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
LT	Data from previous years	UNFCCC 2011 submission	Value of 2009	
LU	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
LV	Data from previous years	UNFCCC 2011 submission	Value of 2009	
MT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
NL	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
PL	Data from previous years	UNFCCC 2011 submission	Value of 2009	
PT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
RO	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
SE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
SI	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
SK	Data from previous years	UNFCCC 2011 submission	Value of 2009	

Table 101Methods and data used for CH4 emissions from 6.A Solid waste disposal on land

Source Cate	gory 6A A. Solid Waste Dispo	sal on Land	
Gas	N2O		
Member	Projection Approach	Data Sources	Notes
State	,		
AT			
BE			
BG			
CY			
CZ			
DE			
EE			
ES	Data from previous years	UNFCCC 2011 submission	Value of 2009
FI			
FR			
UK			
GR			
HU			
LU			
SK			

Table 102Methods and data used for N_2O emissions from 6.A Solid waste disposal on land

Source Cat	Source Category 6B B. Waste Water Handling				
Gas	CH4				
Member	Projection Approach	Data Sources	Notes		
State					
AT	Data from previous years	UNFCCC 2011 submission	Value of 2009		
BE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
BG	Data from previous years	UNFCCC 2011 submission	Value of 2009		
CY	Data from previous years	UNFCCC 2011 submission	Value of 2009		
CZ	Data from previous years	UNFCCC 2011 submission	Value of 2009		
DE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
DK	Data from previous years	UNFCCC 2011 submission	Value of 2009		
EE	Data from previous years	UNFCCC 2011 submission	Value of 2009		
ES	Data from previous years	UNFCCC 2011 submission	Value of 2009		
FI	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
FR	Data from previous years	UNFCCC 2011 submission	Value of 2009		
UK	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
GR	Data from previous years	UNFCCC 2011 submission	Value of 2009		
HU	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
IE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
т	Data from previous years	UNFCCC 2011 submission	Value of 2009		
LT	Data from previous years	UNFCCC 2011 submission	Value of 2009		
LU	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
LV	Data from previous years	UNFCCC 2011 submission	Value of 2009		
MT	Data from previous years	UNFCCC 2011 submission	Value of 2009		
NL	Data from previous years	UNFCCC 2011 submission	Value of 2009		
PL	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
PT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
RO	Data from previous years	UNFCCC 2011 submission	Value of 2009		
SE	Data from previous years	UNFCCC 2011 submission	Value of 2009		
SI	Data from previous years	UNFCCC 2011 submission	Value of 2009		
SK	Data from previous years	UNFCCC 2011 submission	Value of 2009		

Table 103 Methods and data used for CH₄ emissions from 6.B Wastewater handling

Table 104Methods and data used for N2O emissions from 6.B Wastewater handling

Source Ca	Source Category 6B B. Waste Water Handling				
Gas	N2O				
Member State	Projection Approach	Data Sources	Notes		
AT	Data from previous years	UNFCCC 2011 submission	Value of 2009		
BE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
BG	Data from previous years	UNFCCC 2011 submission	Value of 2009		
CY					
CZ	Data from previous years	UNFCCC 2011 submission	Value of 2009		
DE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
DK	Data from previous years	UNFCCC 2011 submission	Value of 2009		
EE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
ES	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
FI	Data from previous years	UNFCCC 2011 submission	Value of 2009		
FR	Data from previous years	UNFCCC 2011 submission	Value of 2009		
UK	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
GR	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
HU	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
IE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
IT	Data from previous years	UNFCCC 2011 submission	Value of 2009		
LT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
LU	Data from previous years	UNFCCC 2011 submission	Value of 2009		
LV	Data from previous years	UNFCCC 2011 submission	Value of 2009		
MT	Data from previous years	UNFCCC 2011 submission	Value of 2009		
NL	Data from previous years	UNFCCC 2011 submission	Value of 2009		
PL	Data from previous years	UNFCCC 2011 submission	Value of 2009		
PT	Data from previous years	UNFCCC 2011 submission	Value of 2009		
RO	Data from previous years	UNFCCC 2011 submission	Value of 2009		
SE	Data from previous years	UNFCCC 2011 submission	Value of 2009		
SI	Data from previous years	UNFCCC 2011 submission	Value of 2009		
SK	Data from previous years	UNFCCC 2011 submission	Value of 2009		

Source C	Source Category 6C C. Waste Incineration				
Gas	CO2				
Member State	Projection Approach	Data Sources	Notes		
AT	Data from previous years	UNFCCC 2011 submission	Value of 2009		
BE	Data from previous years	UNFCCC 2011 submission	Value of 2009		
BG	Data from previous years	UNFCCC 2011 submission	Value of 2009		
CY					
CZ	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
DE					
DK					
EE					
ES	Data from previous years	UNFCCC 2011 submission	Value of 2009		
FI					
FR	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
UK	Data from previous years	UNFCCC 2011 submission	Value of 2009		
GR	Data from previous years	UNFCCC 2011 submission	Value of 2009		
HU	Data from previous years	UNFCCC 2011 submission	Value of 2009		
IE					
IT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
LT	Data from previous years	UNFCCC 2011 submission	Value of 2009		
LU					
LV	Data from previous years	UNFCCC 2011 submission	Value of 2009		
MT	Data from previous years	UNFCCC 2011 submission	Value of 2009		
NL					
PL	Data from previous years	UNFCCC 2011 submission	Value of 2009		
PT	Data from previous years	UNFCCC 2011 submission	Value of 2009		
RO	Data from previous years	UNFCCC 2011 submission	Value of 2009		
SE	Data from previous years	UNFCCC 2011 submission	Value of 2009		
SI	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
SK	Data from previous years	UNFCCC 2011 submission	Value of 2009		

Table 105Methods and data used for CO2 emissions from 6.C Waste incineration

Table 106Methods and data used for CH4 emissions from 6.C Waste incineration

Source Category 6C C. Waste Incineration				
Gas	CH4			
Member	Projection Approach	Data Sources	Notos	
State		Data Sources	Notes	
AT	Data from previous years	UNFCCC 2011 submission	Value of 2009	
BE	Data from previous years	UNFCCC 2011 submission	Value of 2009	
BG				
CY				
CZ	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
DE				
DK	Data from previous years	UNFCCC 2011 submission	Value of 2009	
EE				
ES	Data from previous years	UNFCCC 2011 submission	Value of 2009	
FI				
FR	Data from previous years	UNFCCC 2011 submission	Value of 2009	
UK	Data from previous years	UNFCCC 2011 submission	Value of 2009	
GR	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
HU	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
IE				
IT	Data from previous years	UNFCCC 2011 submission	Value of 2009	
LT				
LU				
LV				
MT	Data from previous years	UNFCCC 2011 submission	Value of 2009	
NL				
PL				
PT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
RO				
SE	Data from previous years	UNFCCC 2011 submission	Value of 2009	
SI				
SK				

Source Ca	Source Category 6C C. Waste incineration			
Gas	N2O			
Member	Projection Approach	Data Sources	Notes	
State			Holds	
AT	Data from previous years	UNFCCC 2011 submission	Value of 2009	
BE	Data from previous years	UNFCCC 2011 submission	Value of 2009	
BG				
CY				
CZ	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
DE				
DK	Data from previous years	UNFCCC 2011 submission	Value of 2009	
EE				
ES	Data from previous years	UNFCCC 2011 submission	Value of 2009	
FI				
FR	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
UK	Data from previous years	UNFCCC 2011 submission	Value of 2009	
GR	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
HU	Data from previous years	UNFCCC 2011 submission	Value of 2009	
IE				
IT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
LT	Data from previous years	UNFCCC 2011 submission	Value of 2009	
LU				
LV	Data from previous years	UNFCCC 2011 submission	Value of 2009	
MT	Data from previous years	UNFCCC 2011 submission	Value of 2009	
NL				
PL	Data from previous years	UNFCCC 2011 submission	Value of 2009	
PT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	
RO				
SE	Data from previous years	UNFCCC 2011 submission	Value of 2009	
SI	Data from previous years	UNFCCC 2011 submission	Value of 2009	
SK	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation	

Table 107 Methods and data used for N₂O emissions from 6.C Waste incineration

Table 108Methods and data used for CH4 emissions from 6.D Other

Source Category 6D D. Other					
Gas	CH4				
Member	Projection Approach	Data Sources	Notes		
State		Data Oburces	Notes		
AT	Data from previous years	UNFCCC 2011 submission	Value of 2009		
BE	Data from previous years	UNFCCC 2011 submission	Value of 2009		
BG					
CY					
CZ					
DE	Data from previous years	UNFCCC 2011 submission	Value of 2009		
DK	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
EE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
ES	Data from previous years	UNFCCC 2011 submission	Value of 2009		
FI	Data from previous years	UNFCCC 2011 submission	Value of 2009		
FR	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
UK					
GR					
HU					
IE					
IT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation		
LT					
LU	Data from previous years	UNFCCC 2011 submission	Value of 2009		
LV	Data from previous years	UNFCCC 2011 submission	Value of 2009		
MT					
NL	Data from previous years	UNFCCC 2011 submission	Value of 2009		
PL					
PT					
RO					
SE					
SI					
SK	Data from previous years	UNFCCC 2011 submission	Value of 2009		

Source Cat	egory 6D D. Other					
Gas	N2O					
Member	Projection Approach	Data Sources	Notes			
State	· · · · · · · · · · · · · · · · · · ·					
AT	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation			
BE						
BG						
CY						
CZ						
DE	Data from previous years	UNFCCC 2011 submission	Value of 2009			
DK	Data from previous years	UNFCCC 2011 submission	Value of 2009			
EE	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation			
ES						
FI	Data from previous years	UNFCCC 2011 submission	Value of 2009			
FR	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation			
UK						
GR						
HU						
IE						
IT						
LT						
LU	Data from previous years	UNFCCC 2011 submission	Value of 2009			
LV	Data from previous years	UNFCCC 2011 submission	Value of 2009			
MT						
NL	Extrapolation from previous years	UNFCCC 2011 submission	linear trend projection via minimum square deviation			
PL						
PT						
RO						
SE						
SI						
SK	Data from previous years	UNFCCC 2011 submission	Value of 2009			

Table 109Methods and data used for N_2O emissions from 6.D Other

• Annex 2 – Detailed results

SUMMARY 2 SUMMARY REPORT FOR CO2 EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 2010 Submission 2011 v1.0 Austria

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total		
SINK CATEGORIES	CO2 equivalent (Gg)								
Total (Net Emissions) (1)	72 788.31	5 578.31	5 417.01	1 055.62	35.05	343.44	85 217.74		
1. Energy	63 554.52	518.17	762.82				64 835.51		
A. Fuel Combustion (Sectoral Approach)	63 316.36	255.70	762.82				64 334.88		
1. Energy Industries	13 765.72	6.59	97.11				13 869.41		
2. Manufacturing Industries and Construction	16 593.56	13.24	174.28				16 781.08		
3. Transport	22 053.35	16.49	250.50				22 320.35		
4. Other Sectors	IE	IE	IE				IE,		
5. Other	10 903.72	219.39	240.93				11 364.04		
B. Fugitive Emissions from Fuels	238.16	262.47	IE,NA				500.63		
1. Solid Fuels	IE,NA,NO	IE,NA,NO	IE				IE,NA,NO,		
2. Oil and Natural Gas	238.16	262.47	IE				500.63		
2. Industrial Processes	9 058.46	17.35	149.11	1 055.62	35.05	343.44	10 659.03		
A. Mineral Products	2 871.34	NA	NE				2 871.34		
B. Chemical Industry	554.89	17.26	149.11				721.26		
C. Metal Production	5 632.23	0.09	NA		IE	IE	5 632.31		
D. Other Production	NA	0.00	0.00				0		
E. Production of Halocarbons and SF6				IE	IE	IE	IE,		
F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	IE,		
G. Other	NA	NA	NA	IE	IE	IE	IE,NA,		
3. Solvent and Other Product Use	163.07		145.7				308.77		
4. Agriculture		3 581.13	3 982.63				7 563.76		
A. Enteric Fermentation		3 252.30					3 252.30		
B. Manure Management		319.23	919.38				1 238.61		
C. Rice Cultivation		NO					NO,		
D. Agricultural Soils(3)		8.73621088	3 063.05				3 071.79		
E. Prescribed Burning of Savannas		NE	NE				NE,		
F. Field Burning of Agricultural Residues		0.85	0.20				1.05		
G. Other		NE	NE				NE,		
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE,		
A. Forest Land	NE	NE	NE				NE,		
B. Cropland	NE	NE	NE				NE,		
C. Grassland	NE	NE	NE				NE,		
D. Wetlands	NE	NE	NE				NE,		
E. Settlements	NE	NE	NE				NE,		
F. Other Land	NE	NE	NE				NE,		
G. Other	NE	NE	NE				NE,		
6. Waste	12.26	1 461.66	376.75				1 850.68		
A. Solid Waste Disposal on Land	NA,NO	1 379.47	0.00				1 379.47		
B. Waste-water Handling		27.31	260.95				288.27		
C. Waste Incineration	12.26	0.01	0.03				12.30		
D. Other	NA	54.87	115.76				170.63586		
7. Other (as specified in Summary 1.A)	NE	NE	NE	NE	NE	NE	NE,		
Memo Items: (4)									
International Bunkers	NE	NE	NE				NE,		
Aviation	NE	NE	NE				NE,		
Marine	NE	NE	NE				NE,		
Multilateral Operations	NE	NE	NE				NE,		
CO2 Emissions from Biomass	NE						NE,		
Total CO2 Equivalent Emissions without Land Use, Land-Use Change and Forestry									
Total CO2 Equivalent Emissions with Land Use. Land-Use Change and Forestry									

Austria provided its own early estimate for 2010 (see Table 5). This estimate has been used to assess progress towards targets.

The estimates at the level of sub-sector and gas in this table have been compiled according to the methodology described in Annex I. The EU early estimates are based on a bottom up approach (by sector, gas and country). The tables in Annex II are shown here for transparency reasons as this is how EU estimates have been derived. The uncertainty in the numbers increases at finer levels of detail, particularly for non-CO₂ emissions. The uncertainty is lowest for CO₂ emissions from energy combustion. Sector 1A5 includes emissions from 1A4.
Inventory 2010 Submission 2011 v1.0 Belgium

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES			CO2 e	quivalent (G	ig)		
Total (Net Emissions) (1)	115 804.66	6 507.14	7 716.56	1 870.62	159.37	96.50	132 154.85
1. Energy	107 700.83	682.48	677.61				109 060.92
A. Fuel Combustion (Sectoral Approach)	107 584.66	282.95	677.61				108 545.21
1. Energy Industries	24 537.96	20.88	181.52				24 740.36
2. Manufacturing Industries and Construction	22 363.02	64.49	110.29				22 537.79
3. Transport	29 135.44	17.60	238.53				29 391.57
4. Other Sectors	IE	IE	IE				IE,
5. Other	31 548.24	179.97	147.28				31 875.49
B. Fugitive Emissions from Fuels	116.17	399.54	IE,NA,NO				515.71
1. Solid Fuels	NO	6.90	IE				6.90
2. Oil and Natural Gas	116.17	392.63	IE				508.80
2. Industrial Processes	8 027.11	33.62	2 082.46	1 870.62	159.37	96.50	12 269.68
A. Mineral Products	4 742.62	NA,NO	NE				4 742.62
B. Chemical Industry	1 849.31	0.73	2 082.46				3 932.49
C. Metal Production	1 435.19	32.89	NO		IE	IE	1 468.08
D. Other Production	IE	0.00	0.00				0.00
E. Production of Halocarbons and SF6				IE	IE	IE	IE,
F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	IE,
G. Other	NA	NA	NA	IE	IE	IE	IE,NA,
3. Solvent and Other Product Use	NA		213.71				213.71
4. Agriculture		5 187.01	4 448.28				9 635.29
A. Enteric Fermentation		3 559.33					3 559.33
B. Manure Management		1 627.68	774.50				2 402.18
C. Rice Cultivation		NO					NO,
D. Agricultural Soils(3)		NA	3 673.78				3 673.78
E. Prescribed Burning of Savannas		NE	NE				NE,
F. Field Burning of Agricultural Residues		NO	NO				NO,
G. Other		NE	NE				NE,
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE,
A. Forest Land	NE	NE	NE				NE,
B. Cropland	NE	NE	NE				NE,
C. Grassland	NE	NE	NE				NE,
D. Wetlands	NE	NE	NE				NE,
E. Settlements	NE	NE	NE				NE,
F. Other Land	NE	NE	NE				NE,
G. Other	NE	NE	NE				NE,
6. Waste	76.72	604.03	294.49				975.25
A. Solid Waste Disposal on Land	NA,NO	423.92	0.00				423.92
B. Waste-water Handling	70.70	118.92	294.49				413.41
C. Waste Incineration	/6./2	0.00	0.00				76.73
D. Other	NA	61.19	NA				61.19
7. Other (as specified in Summary 1.A)	NE	NE	NE	NE	NE	NE	NE,
Memo Items: (4)							
International Bunkers	NE	NE	NE				NE,
Aviation	NE	NE	NE				NE,
	NE	NE	NE				NE,
Multilateral Operations	NE	NE	NE				NE,
CO2 Emissions from Biomass	NE						NE,
To	tal CO2 Equival	ent Emissions	without Land	Use, Land-L	Jse Change a	and Forestry	132 154.85
	Total CO2 Equ	ivalent Emissi	ons with Land	Use, Land-L	use Change a	and Forestry	NE,

Inventory 2010 Submission 2011 v1.0 Bulgaria

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total	
SINK CATEGORIES	CO2 equivalent (Gg)							
Total (Net Emissions) (1)	45 314.74	8 833.92	4 625.57	268.00	0.01	10.34	59 052.58	
1. Energy	42 130.81	2 203.72	254.70				44 589.23	
A. Fuel Combustion (Sectoral Approach)	42 116.30	243.70	254.70				42 614.70	
1. Energy Industries	31 657.84	7.77	121.08				31 786.69	
2. Manufacturing Industries and Construction	3 276.61	11.93	21.80				3 310.34	
3. Transport	6 266.48	13.38	74.40				6 354.26	
4. Other Sectors	IE	IE	IE				IE,	
5. Other	915.37	210.62	37.42				1 163.41	
B. Fugitive Emissions from Fuels	14.51	1 960.02	NA,NO				1 974.53	
1. Solid Fuels	NA,NO	1 463.20	IE				1 463.20	
2. Oil and Natural Gas	14.51	496.82	IE				511.33	
2. Industrial Processes	3 124.71	1.29	271.88	268.00	0.01	10.34	3 676.23	
A. Mineral Products	1 748.57	NO	NE				1 748.57	
B. Chemical Industry	590.01	1.29	271.88				863.17	
C. Metal Production	786.13	NA,NO	NA		IE	IE	786.13	
D. Other Production	NO	0.00	0.00				0.00	
E. Production of Halocarbons and SF6				IE	IE	IE	IE,	
F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	IE,	
G. Other	NO	NO	NO	IE	IE	IE	IE,NO,	
3. Solvent and Other Product Use	25.32		23.22				48.54	
4. Agriculture		2 141.47	3 910.05				6 051.53	
A. Enteric Fermentation		1 287.31					1 287.31	
B. Manure Management		713.03	421.48				1 134.51	
C. Rice Cultivation		71.06					71.06	
D. Agricultural Soils(3)		NA,NO	3 454.94				3 454.94	
E. Prescribed Burning of Savannas		NE	NE				NE,	
F. Field Burning of Agricultural Residues		70.07	33.63				103.70	
G. Other		NE	NE				NE,	
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE,	
A. Forest Land	NE	NE	NE				NE,	
B. Cropland	NE	NE	NE				NE,	
C. Grassland	NE	NE	NE				NE,	
D. Wetlands	NE	NE	NE				NE,	
E. Settlements	NE	NE	NE				NE,	
F. Other Land	NE	NE	NE				NE,	
G. Other	NE	NE	NE				NE,	
6. Waste	33.89	4 487.44	165.72				4 687.05	
A. Solid Waste Disposal on Land	NO	3 802.18	0.00				3 802.18	
B. Waste-water Handling		685.26	165.72				850.98	
C. Waste Incineration	33.89	NO	NO				33.89	
D. Other	NA	NA	NA				NA,	
7. Other (as specified in Summary 1.A)	NE	NE	NE	NE	NE	NE	NE,	
Memo Items: (4)								
International Bunkers	NE	NE	NE				NE.	
Aviation	NE	NE	NE				NE.	
Marine	NE	NE	NE				NE.	
Multilateral Operations	NE	NE	NE				NE.	
CO2 Emissions from Biomass	NE						NE.	
							,	
	Total CO2 Fou	ivalent Emiss	ions without I	and Use, Lan	d-Use Change	and Forestry	59 052 58	
	Total CO2 F	Equivalent Em	issions with I	and Use Lan	d-Use Change	and Forestry	NF	
				CCC, Lun			, _ \ \ L ,	

Inventory 2010 Submission 2011 v1.0 Cyprus

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES			CO2	equivalent	(Gg)		
Total (Net Emissions) (1)	7 839.84	1 019.86	366.59	7.10	NA,NE,NO,	NA,NE,	9 233.40
1. Energy	7 116.56	16.85	70.48				7 203.89
A. Fuel Combustion (Sectoral Approach)	7 116.56	16.85	70.48				7 203.89
1. Energy Industries	3 992.47	3.24	9.55				4 005.26
2. Manufacturing Industries and Construction	670.99	0.78	1.97				673.74
3. Transport	2 240.95	10.20	60.43				2 311.58
4. Other Sectors	IE	IE	IE				IE,
5. Other	212.15	2.64	-1.47				213.32
B. Fugitive Emissions from Fuels	NA,NE,NO,	NA,NE,NO,	NA,NO				NA,NE,NO,
1. Solid Fuels	NA,NO	NA,NO	IE				IE,NA,NO,
2. Oil and Natural Gas	NA,NE,NO	NA,NE,NO	IE				IE,NA,NE,NO,
2. Industrial Processes	720.20	0.00	0.00	7.10	NA,NO	NA	727.30
A. Mineral Products	720.20	NA	NE				720.20
B. Chemical Industry	0.00	0.00	0				0.00
C. Metal Production	NA,NO	NA,NO	NA		IE	IE	IE,NA,NO,
D. Other Production	NE	0.00	0.00				0
E. Production of Halocarbons and SF6				IE	IE	IE	IE,
F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	IE,
G. Other	NA	NA	NA	IE	IE	IE	IE,NA,
3. Solvent and Other Product Use	3.09		NE				3.09
4. Agriculture		410.18	296.11				706.29
A. Enteric Fermentation		170.66					170.66
B. Manure Management		239.00	177.01				416.02
C. Rice Cultivation		NA,NO					NA,NO,
D. Agricultural Soils(3)		NA,NE	119.03				119.03
E. Prescribed Burning of Savannas		NE	NE				NE,
F. Field Burning of Agricultural Residues		0.52	0.07				0.59
G. Other		NE	NE				NE,
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE,
A. Forest Land	NE	NE	NE				NE,
B. Cropland	NE	NE	NE				NE,
C. Grassland	NE	NE	NE				NE,
D. Wetlands	NE	NE	NE				NE,
E. Settlements	NE	NE	NE				NE,
F. Other Land	NE	NE	NE				NE,
G. Other	NE	NE	NE				NE,
6. Waste	NA,NE,NO,	592.83	0.00				592.83
A. Solid Waste Disposal on Land	NA,NE,NO	546.99	0.00				546.99
B. Waste-water Handling		45.84	IE,NA,NE				45.84
C. Waste Incineration	NA	NA	NA				NA,
D. Other	NA	NA	NA				NA,
7. Other (as specified in Summary 1.A)	NE	NE	NE	NE	NE	NE	NE,
Memo Items: (4)							
International Bunkers	NE	NE	NE				NE,
Aviation	NE	NE	NE				NE,
Marine	NE	NE	NE				NE,
Multilateral Operations	NE	NE	NE				NE,
CO2 Emissions from Biomass	NE						NE,
Total	CO2 Equivale	ent Emissions	without Land	Use, Land-L	Jse Change a	and Forestry	9 233.40
То	tal CO2 Equiv	alent Emissio	ons with Land	Use, Land-L	Jse Change a	and Forestry	NE,
					-		

Inventory 2010 Submission 2011 v1.0 Czech Republic

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES	2 equivalent (G	ig)					
Total (Net Emissions) (1)	115 845.63	11 308.67	7 326.47	1 041.67	28.97	49.61	135 601.02
1. Energy	105 152.59	5 469.79	1 182.16				111 804.54
A. Fuel Combustion (Sectoral Approach)	105 134.21	543.23	1 182.11				106 859.55
1. Energy Industries	60 226.70	24.40	287.20				60 538.31
2. Manufacturing Industries and Construction	15 941.63	38.09	69.11				16 048.83
3. Transport	16 155.23	27.70	654.53				16 837.46
4. Other Sectors	IE	IE	IE				IE,
5. Other	12 810.64	453.05	171.27				13 434.95
B. Fugitive Emissions from Fuels	18.38	4 926.56	0.05				4 944.99
1. Solid Fuels	NA,NE	4 256.94	IE				4 256.94
2. Oil and Natural Gas	18.38	669.61	IE				688.00
2. Industrial Processes	10 102.64	81.67	592.75	1 041.67	28.97	49.61	11 897.30
A. Mineral Products	3 403.78	3.62	NE				3 407.40
B. Chemical Industry	634.42	22.75	592.75				1 249.92
C. Metal Production	6 064.44	55.30	NA		IE	IE	6 119.74
D. Other Production	NA	0.00	0.00			.=	0.00
E. Production of Halocarbons and SF6				IE	IE	IE	IE,
F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	IE,
G. Other	NA	NA	NA	IE	IE	IE	IE,NA,
3. Solvent and Other Product Use	270.29		232.50				502.79
4. Agriculture		2 720.51	5 106.79				7 827.30
A. Enteric Fermentation		2 299.34	000.40				2 299.34
B. Manure Management		421.17	300.42				721.59
C. Rice Cultivation		NO	4 000 07				NO,
D. Agricultural Solis(3)		NA,NE	4 806.37				4 806.37
E. Prescribed Burning of Savannas		NE	NE				NE,
F. Fleid Burning of Agricultural Residues		NU	NU				NU,
G. Other	NE	NE	NE				NE,
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE,
A. Forest Land	NE	NE	NE				NE,
B. Cropiand	INE NE	INE NE	INE NE				INE,
D. Wetlands	NE	NE					NE,
E Sottlements	NE	NE					NE,
E. Other Land	NE	NE	NE				NE,
G Other	NE	NE	NE				NE,
6 Waste	320.12	3 036 69	212 27				3 569 08
A Solid Waste Disposal on Land	NA NO	2 528 88	0.00				2 528 88
B. Waste-water Handling	10,000	507.82	204.44				712.26
C. Waste Incineration	320.12	0.00	7.83				327.95
D. Other	NA	NA	NA				NA.
7. Other (as specified in Summary 1.A)	NE	NE	NE	NE	NE	NE	NE.
······································							,
Memo Items: (4)							
International Bunkers	NF	NF	NF				NF
Aviation	NE	NE	NE				NE.
Marine	NE	NE	NE				NE.
Multilateral Operations	NE	NE	NE				NE.
CO2 Emissions from Biomass	NE						NE.
							_,
Tot	al CO2 Equival	ent Emissions	without Land	I Use, Land-l	Jse Change a	and Forestrv	135 601.02
	Total CO2 Equi	valent Emissio	ons with Land	Use, Land-U	Jse Change a	and Forestry	NE,

Inventory 2010 Submission 2011 v1.0 Germany

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N20	HFCs (2)	PFCs (2)	SF6 (2)	Total
	005 000 07	17 700 05	00.001.40		39) 407 FO	0 474 07	054 070 00
I otal (Net Emissions) (1)	825 262.37	47 736.95	66 031.16	12 342.73	427.50	3 1/1.9/	954 972.69
1. Energy	7/1 429.64	13 049.53	6 079.37				790 558.55
A. Fuel Combustion (Sectoral Approach)	769 953.16	2 626.63	6 078.47				778 658.26
Energy industries Magufasturing ladustries and Construction	347 598.73	1 512.30	3 686.78				352 797.87
2. Manufacturing industries and Construction	119 950.26	100.24	000.00				120 994.36
4. Other Sectors	152 7 00.00	137.09	990.69				155 914.04
5 Other	1/0 618 12	IL 821.14	511.03				150 051 10
B. Fugitive Emissions from Fuels	1 4 7 6 1 8	10 /22 90	0.90				11 900 28
1 Solid Fuels	I 470.40	2 681 94	0.30				2 681 94
2 Oil and Natural Gas	1 476 48	7 740 96	IE				9 217 44
2. On and Natural Gas	52 356 38	5.62	11 267 55	12 3/2 73	427 50	3 171 97	79 571 74
A Mineral Products	18 647 70	5.02 NO	NF	12 342.73	427.50	5171.57	18 647 70
B Chemical Industry	16 199 29	0.30	11 252 15				27 451 74
C. Metal Production	17 509 39	5.31	15 40		IF	IF	17 530 11
D. Other Production	NO	0.00	0.00				0.00
E. Production of Halocarbons and SF6		0.00	0.00	IE	IE	IE	IE.
F. Consumption of Halocarbons and SE6 (2)				IE	IE	IE	IE.
G. Other	NO	NO	NO	IE	IE	IE	IE.NO.
3. Solvent and Other Product Use	1 476.35	-	319.04				1 795.40
4. Agriculture		26 802.11	45 706.03				72 508.14
A. Enteric Fermentation		20 794.20					20 794.20
B. Manure Management		6 007.91	2 220.69				8 228.60
C. Rice Cultivation		NO					NO,
D. Agricultural Soils(3)		NO	43 485.34				43 485.34
E. Prescribed Burning of Savannas		NE	NE				NE,
F. Field Burning of Agricultural Residues		NO	NO				NO,
G. Other		NE	NE				NE,
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE,
A. Forest Land	NE	NE	NE				NE,
B. Cropland	NE	NE	NE				NE,
C. Grassland	NE	NE	NE				NE,
D. Wetlands	NE	NE	NE				NE,
E. Settlements	NE	NE	NE				NE,
F. Other Land	NE	NE	NE				NE,
G. Other	NE	NE	NE				NE,
6. Waste	NO,	7 879.70	2 659.16				10 538.86
A. Solid Waste Disposal on Land	NO	7 252.00	0.00				7 252.00
B. Waste-water Handling		73.22	2 301.69				2 374.91
C. Waste Incineration	NO	NO	NO				NO,
D. Other	NO	554.48	357.47				911.96
7. Other (as specified in Summary 1.A)	NE	NE	NE	NE	NE	NE	NE,
Memo Items: (4)							
International Bunkers	NE	NE	NE				NE,
Aviation	NE	NE	NE				NE,
Marine	NE	NE	NE				NE,
Multilateral Operations	NE	NE	NE				NE,
CO2 Emissions from Biomass	NE						NE,
	T . 1 0 0 0 =						0.5 4 0.5 4
	Total CO2 Equ	ivalent Emissio	ons without La	nd Use, Land	-Use Change	and Forestry	954 972.69
	Total CO2 I	-quivalent Emi	ssions with La	na Use, Land	-use Change	and Forestry	NE,

Germany provided its own early estimate for 2010 (see Table 5). This estimate has been used to assess progress towards targets.

Inventory 2010 Submission 2011 v1.0 Denmark

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	CO2 (1)	CH4	N2O CO2	HFCs (2) equivalent (PFCs (2) Gq)	SF6 (2)	Total
Total (Net Emissions) (1)	48 840.96	5 935.88	6 042.68	798.84	11.15	34.49	61 664.00
1. Energy	47 867.08	520.48	376.24	100101		0.1.10	48 763.80
A. Fuel Combustion (Sectoral Approach)	47 516.50	408.52	375.63				48 300.65
1. Energy Industries	23 207.49	200.23	110.94				23 518.66
2. Manufacturing Industries and Construction	4 082.02	14.87	31.94				4 128.83
3. Transport	13 063.42	15.97	133.94				13 213.34
4. Other Sectors	IE	IE	IE				IE.
5. Other	7 163.57	177.44	98.81				7 439.82
B. Fugitive Emissions from Fuels	350.58	111.96	0.61				463.15
1. Solid Fuels	NA.NO	NA.NO	IE				IE.NA.NO.
2. Oil and Natural Gas	350.58	111.96	IE				462.54
2. Industrial Processes	879.23	0.00	0.00	798.84	11.15	34.49	1 723.72
A. Mineral Products	844.43	IE.NA	NE				844.43
B. Chemical Industry	2.13	0.00	0.00				2.13
C. Metal Production	NA,NO	NA,NO	NO		IE	IE	IE,NA,NO,
D. Other Production	1.92	0.00	0.00				1.92
E. Production of Halocarbons and SF6				IE	IE	IE	IE,
F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	IE,
G. Other	30.76	NA,NO	NA,NO	IE	IE	IE	30.76
3. Solvent and Other Product Use	65.50		37.00				102.51
4. Agriculture		4 229.29	5 507.79				9 737.08
A. Enteric Fermentation		2 965.03					2 965.03
B. Manure Management		1 261.38	441.19				1 702.57
C. Rice Cultivation		NO	-				NO.
D. Agricultural Soils(3)		NA.NE	5 065.50				5 065.50
E. Prescribed Burning of Savannas		NE	NE				NE.
F. Field Burning of Agricultural Residues		2.88	1.10				3.99
G. Other		NE	NE				NE.
5. Land Use. Land-Use Change and Forestry(1)	NE	NE	NE				NE.
A. Forest Land	NE	NE	NE				NE,
B. Cropland	NE	NE	NE				NE.
C. Grassland	NE	NE	NE				NE,
D. Wetlands	NE	NE	NE				NE,
E. Settlements	NE	NE	NE				NE,
F. Other Land	NE	NE	NE				NE,
G. Other	NE	NE	NE				NE.
6. Waste	29.14	1 186.11	121.65				1 336.90
A. Solid Waste Disposal on Land	NA,NE,NO	1 027.54	0.00				1 027.54
B. Waste-water Handling		74.68	80.87				155.55
C. Waste Incineration	IE	0.02	0.29				0.30
D. Other	29.14	83.88	40.50				153.52
7. Other (as specified in Summary 1.A)	NE	NE	NE	NE	NE	NE	NE,
Memo Items: (4)							
International Bunkers	NE	NE	NE				NE,
Aviation	NE	NE	NE				NE,
Marine	NE	NE	NE				NE.
Multilateral Operations	NE	NE	NE				NE,
CO2 Emissions from Biomass	NE						NE.
							,
	Total CO2 Equ	ivalent Emissio	ons without La	nd Use. Land	-Use Change	and Forestrv	61 664.00
	Total CO2 F	quivalent Emi	ssions with La	nd Use, Land	-Use Change	and Forestry	NF
	10101 002 1		Lessing marined		2 to onlange		

Denmark provided its own early estimate for 2010 (see Table 5). This estimate has been used to assess progress towards targets.

Inventory 2010 Submission 2011 v1.0 Estonia

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES			CO2	equivalent	(Gg)		
Total (Net Emissions) (1)	17 617.25	1 403.47	1 047.87	140.66	NA,NE,NO,	1.44	20 210.69
1. Energy	17 268.11	385.58	97.81				17 751.50
A. Fuel Combustion (Sectoral Approach)	17 268.11	44.00	97.81				17 409.92
1. Energy Industries	15 362.00	8.50	25.04				15 395.54
2. Manufacturing Industries and Construction	668.34	0.52	2.11				670.97
3. Transport	2 169.60	5.04	16.99				2 191.62
4. Other Sectors	IE	IE	IE				IE,
5. Other	-931.82	29.94	53.67				-848.22
B. Fugitive Emissions from Fuels	0.00	341.58	NO				341.58
1. Solid Fuels	NO	NO	IE				IE,NO,
2. Oil and Natural Gas	0.00	341.58	IE				341.58
2. Industrial Processes	336.28	0.00	0.00	140.66	NA,NO	1.44	478.38
A. Mineral Products	306.62	NO	NE				306.62
B. Chemical Industry	29.66	0.00	0				29.66
C. Metal Production	NA,NO	NA,NO	NA		IE	IE	IE,NA,NO,
D. Other Production	NO	0.00	0.00				0
E. Production of Halocarbons and SF6				IE	IE	IE	IE,
F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	IE,
G. Other	NO	NO	NO	IE	IE	IE	IE,NO,
3. Solvent and Other Product Use	12.86		4.43930333				17.30
4. Agriculture		501.70	813.09				1 314.79
A. Enteric Fermentation		437.78					437.78
B. Manure Management		59.40	119.75				179.15
C. Rice Cultivation		NO					NO,
D. Agricultural Soils(3)		NO	692.48				692.48
E. Prescribed Burning of Savannas		NE	NE				NE,
F. Field Burning of Agricultural Residues		4.52	0.85				5.38
G. Other		NE	NE				NE,
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE,
A. Forest Land	NE	NE	NE				NE,
B. Cropland	NE	NE	NE	_			NE,
C. Grassland	NE	NE	NE				NE,
D. Wetlands	NE	NE	NE				NE,
E. Settlements	NE	NE	NE				NE,
F. Other Land	NE	NE	NE				NE,
G. Other		NE	NE				NE,
6. Waste	NA,NE,NO,	516.19	132.53				648.72
A. Solid Waste Disposal on Land	NA,NE,NO	400.46	72.00				400.46
B. Waste-water Handling	NIA		72.08				0.01
		54.50	60.44				115 0241466
D. Other	INE	54.59	00.44	NE	NE	NE	115.0341400
7. Other (as specified in Summary T.A)	INE	INE	INE	INE	INE	INE	NE,
Mama Itams: (1)							
International Bunkers							NE
	NE						NE,
Marine	NE		NE				NE,
Multilateral Operations	NE	NE	NE				NE,
CO2 Emissions from Biomass	NE	INL.	.42				NE,
	INE						1¥E,
Tota	al CO2 Equival	ent Emission	s without Lan	llse Land-	lise Change	and Forestry	20 210 60
1012		ivalent Emission	ions with Land	d lleo Land		and Forestry	20 210.09
				Lanu-	ose change a	and r oreally	INE,

Inventory 2010 Submission 2011 v1.0 Spain

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES			CO2 eq	uivalent (Gg)		
Total (Net Emissions) (1)	286 181.90	36 788.52	25 977.12	7 246.87	308.55	350.98	356 853.94
1. Energy	266 885.36	2 686.72	2 333.31				271 905.38
A. Fuel Combustion (Sectoral Approach)	264 637.35	1 442.20	2 333.29				268 412.84
 Energy Industries 	72 267.36	150.76	702.06				73 120.18
Manufacturing Industries and Construction	56 609.44	544.11	519.11				57 672.66
3. Transport	91 900.36	105.31	869.43				92 875.10
Other Sectors	IE	IE	IE				IE,
5. Other	43 860.19	642.03	242.68				44 744.90
B. Fugitive Emissions from Fuels	2 248.00	1 244.51	0.02				3 492.54
1. Solid Fuels	1.18	733.14	IE				734.32
Oil and Natural Gas	2 246.83	511.37	IE				2 758.20
2. Industrial Processes	18 288.23	53.60	895.74	7 246.87	308.55	350.98	27 143.96
A. Mineral Products	14 488.16	NA	NE				14 488.16
B. Chemical Industry	577.52	40.95	895.434628				1 513.91
C. Metal Production	3 222.55	12.65	0.31		IE	IE	3 235.50
D. Other Production	NA	0.00	0.00				0
E. Production of Halocarbons and SF6				IE	IE	IE	IE,
F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	IE,
G. Other	NA	NA	NA	IE	IE	IE	IE,NA,
3. Solvent and Other Product Use	993.07		1596.173706				2589.24
4. Agriculture		18 648.64	19 858.52				38 507.16
A. Enteric Fermentation		12 349.02					12 349.02
B. Manure Management		5 718.95	2 513.34				8 232.29
C. Rice Cultivation		240.53					240.53
D. Agricultural Soils(3)		IE,NA	17 283.89				17 283.89
E. Prescribed Burning of Savannas		NE	NE				NE,
F. Field Burning of Agricultural Residues		340.13	61.28				401.41
G. Other		NE	NE				NE,
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE,
A. Forest Land	NE	NE	NE				NE,
B. Cropland	NE	NE	NE				NE,
C. Grassland	NE	NE	NE				NE,
D. Wetlands	NE	NE	NE				NE,
E. Settlements	NE	NE	NE				NE,
F. Other Land	NE	NE	NE				NE,
G. Other	NE	NE	NE		_		NE,
6. Waste	15.25	15 399.57	1 293.39				16 /08.20
A. Solid waste Disposal on Land	11.32	12 360.62	1.17				12 3/3.11
B. Waste-water Handling	0.00	2 304.50	1 284.19				3 588.69
D. Other	3.93	0.53	8.03				12.49
D. Other	NA	733.92	NE				733.9197978
7. Other (as specified in Summary 1.A)	NE	NE	NE	NE	NE	NE	NE,
Mama Kama (A)							
Memo Items: (4)	N.F.	N.F.	NE				NE
Aviation	NE	NE	NE				NE,
Aviation	NE	NE	NE				NE,
Wallie Multilatoral Operationa	NE	NE	NE				NE,
CO2 Emissions from Diamage	NE	NE	NE			_	NE,
CO2 Emissions from Biomass	NE						NE,
		inclused Environment			las Chara	and Farmer	050.050.01
	Total CO2 Equi		is without Land	Use, Land-U	se Change a	and Forestry	300 853.94
	Total CO2 E	quivalent Emiss	sions with Land	Use, Land-U	ise Change a	ana ⊢orestry	NE,

Spain provided its own early estimate for 2010 (see Table 5). This estimate has been used to assess progress towards targets.

Inventory 2010 Submission 2011 v1.0 Finland

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES			CO2	equivalent (Gg)		
Total (Net Emissions) (1)	63 360.49	4 147.51	5 868.54	1 020.93	9.32	40.19	74 446.97
1. Energy	59 104.14	399.87	1 023.00				60 527.01
A. Fuel Combustion (Sectoral Approach)	58 975.59	351.63	1 022.50				60 349.72
 Energy Industries 	29 776.79	21.54	305.49				30 103.81
2. Manufacturing Industries and Construction	10 321.68	12.53	154.59				10 488.80
3. Transport	13 196.78	40.11	179.79				13 416.68
4. Other Sectors	IE	IE	IE				IE,
5. Other	5 680.34	277.45	382.64				6 340.43
B. Fugitive Emissions from Fuels	128.55	48.24	0.50				177.29
1. Solid Fuels	NO	NO	IE				IE,NO,
2. Oil and Natural Gas	128.55	48.24	IE				176.79
2. Industrial Processes	4 210.65	8.35	792.99	1 020.93	9.32	40.19	6 082.41
A. Mineral Products	1 047.99	NO	NE				1 047.99
B. Chemical Industry	684.79	0.00	792.99				1 477.77
C. Metal Production	2 477.87	8.35	NO		IE	IE	2 486.22
D. Other Production	NO	0.00	0.00				0.00
E. Production of Halocarbons and SF6				IE	IE	IE	IE,
F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	IE,
G. Other	NA	NA	NA	IE	IE	IE	IE,NA,
3. Solvent and Other Product Use	45.70		24.78				70.48
4. Agriculture		1 851.60	3 871.80				5 723.40
A. Enteric Fermentation		1 560.61					1 560.61
B. Manure Management		290.63	398.84				689.47
C. Rice Cultivation		NO					NO,
D. Agricultural Soils(3)		NE,NO	3 472.86				3 472.86
E. Prescribed Burning of Savannas		NE	NE				NE,
F. Field Burning of Agricultural Residues		0.36	0.11				0.46
G. Other		NE	NE				NE,
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE,
A. Forest Land	NE	NE	NE				NE,
B. Cropland	NE	NE	NE				NE,
C. Grassland	NE	NE	NE				NE,
D. Wetlands	NE	NE	NE				NE,
E. Settlements	NE	NE	NE				NE,
F. Other Land	NE	NE	NE				NE,
G. Other	NE	NE	NE				NE,
6. Waste	IE,NO,	1 887.69	155.97				2 043.66
A. Solid Waste Disposal on Land	NO	1 702.51	0.00				1 702.51
B. Waste-water Handling		122.11	93.56				215.66
C. Waste Incineration	IE	IE	IE				IE,
D. Other	NO	63.08	62.41				125.49
7. Other (as specified in Summary 1.A)	NE	NE	NE	NE	NE	NE	NE.
Memo Items: (4)							
International Bunkers	NE	NE	NE				NE.
Aviation	NE	NE	NE				NE.
Marine	NE	NE	NE				NE.
Multilateral Operations	NE	NE	NE				NE.
CO2 Emissions from Biomass	NE						NE.
							,
Tot	al CO2 Equiva	lent Emissions	without Land	Use, Land-L	lse Change a	and Forestry	74 446 97
	Total CO2 Equiva	ivalent Emissi	ons with Land	Lise Land-L	lse Change	and Forestry	NE
	. Stur 502 LYL		and with Laflu	500, Land-C	so onange a	and i orearry	

Inventory 2010 Submission 2011 v1.0 France

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES			CO2 e	quivalent (G			
Total (Net Emissions) (1)	381 697.35	64 093.34	62 099.49	15 943.57	274.22	499.49	524 607.46
1. Energy	360 909.87	3 083.04	4 520.65				368 513.56
A. Fuel Combustion (Sectoral Approach)	357 283.65	1 892.08	4 472.69				363 648.41
1. Energy Industries	58 355.75	41.82	661.88				59 059.45
Manufacturing Industries and Construction	67 939.10	169.01	846.67				68 954.79
3. Transport	129 407.02	214.11	1 555.77				131 176.89
4. Other Sectors	IE	IE	IE				IE,
5. Other	101 581.78	1 467.13	1 408.37				104 457.28
B. Fugitive Emissions from Fuels	3 626.22	1 190.97	47.96				4 865.15
1. Solid Fuels	NA,NO	57.73	IE				57.73
2. Oil and Natural Gas	3 626.22	1 133.24	IE				4 759.46
2. Industrial Processes	18 007.09	56.45	3 784.53	15 943.57	274.22	499.49	38 565.34
A. Mineral Products	11 865.39	NA	NE				11 865.39
B. Chemical Industry	2 394.89	54.95	3 784.53				6 234.37
C. Metal Production	3 746.81	1.50	NA		IE	IE	3 748.31
D. Other Production	NA	0.00	0.00				0.00
E. Production of Halocarbons and SF6				IE	IE	IE	IE,
F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	IE,
G. Other	NO	NO	NO	IE	IE	IE	IE,NO,
3. Solvent and Other Product Use	1 093.05		86.97				1 180.01
4. Agriculture		42 342.91	52 139.48				94 482.39
A. Enteric Fermentation		28 664.09					28 664.09
B. Manure Management		13 564.19	5 919.77				19 483.96
C. Rice Cultivation		114.64					114.64
D. Agricultural Soils(3)		NA	46 219.70				46 219.70
E. Prescribed Burning of Savannas		NE	NE				NE,
F. Field Burning of Agricultural Residues		NO	NO				NO,
G. Other		NE	NE				NE,
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE,
A. Forest Land	NE	NE	NE				NE,
B. Cropland	NE	NE	NE				NE,
C. Grassland	NE	NE	NE				NE,
D. Wetlands	NE	NE	NE				NE,
E. Settlements	NE	NE	NE				NE,
F. Other Land	NE	NE	NE				NE,
G. Other	NE	NE	NE				NE,
6. Waste	1 687.35	18 610.93	1 567.88				21 866.15
A. Solid Waste Disposal on Land	NA,NO	17 069.63	0.00				17 069.63
B. Waste-water Handling	1.007.05	1 205.24	1 144.41				2 349.65
C. Waste Incineration	1 687.35	205.49	82.90				1 975.73
D. Other	NA	130.58	340.57				4/1.15
7. Other (as specified in Summary 1.A)	NE	NE	NE	NE	NE	NE	NE,
Memo Items: (4)							
International Bunkers	NE	NE	NE				NE,
Aviation	NE	NE	NE				NE,
Marine	NE	NE	NE				NE,
Multilateral Operations	NE	NE	NE				NE,
CO2 Emissions from Biomass	NE						NE,
	Total CO2 E	quivalent Emiss	ions without La	nd Use, Land	-Use Change	and Forestry	524 607.46
	Total CO:	2 Equivalent Err	nissions with La	nd Use, Land	-Use Change	and Forestry	NE,

Inventory 2010 Submission 2011 v1.0 Greece

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES			CO2	equivalent (Gg)		
Total (Net Emissions) (1)	102 310.00	8 578.78	6 832.61	2 568.96	36.13	5.02	120 331.49
1. Energy	96 030.40	1 535.10	717.82				98 283.31
A. Fuel Combustion (Sectoral Approach)	96 023.79	181.18	717.80				96 922.77
1. Energy Industries	51 585.36	15.74	171.16				51 772.26
2. Manufacturing Industries and Construction	6 865.93	9.54	37.20				6 912.67
3. Transport	21 926.17	71.81	231.74				22 229.72
4. Other Sectors	IE	IE	IE				IE,
5. Other	15 646.33	84.09	277.70				16 008.12
B. Fugitive Emissions from Fuels	6.60	1 353.92	0.02				1 360.54
1. Solid Fuels	IE,NO	1 188.08	IE				1 188.08
2. Oil and Natural Gas	6.60	165.84	IE				172.44
2. Industrial Processes	6 114.18	0.46	357.23	2 568.96	36.13	5.02	9 081.97
A. Mineral Products	4 877.88	NA,NO	NE				4 877.88
B. Chemical Industry	156.49	0.00	357.23				513.72
C. Metal Production	1 079.80	0.46	NA		IE	IE	1 080.26
D. Other Production	NA	0.00	0.00				0.00
E. Production of Halocarbons and SF6				IE	IE	IE	IE,
F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	IE,
G. Other	NO	NO	NO	IE	IE	IE	IE,NO,
3. Solvent and Other Product Use	161.89		154.74				316.64
4. Agriculture		3 740.10	5 218.18				8 958.28
A. Enteric Fermentation		3 255.77	005.00				3 255.77
B. Manure Management		328.25	305.30				633.54
C. Rice Cultivation		121.81	4 000 07				121.81
D. Agricultural Solis(3)		INE,NO	4 902.07				4 902.07
E. Freschoed Burning of Savannas		INE 24.29	10.92				NE,
C. Other		34.20 NE	10.02				45.10
6. Other	NE	INE	NE				INE,
A Forest Land	NE		NE				INE,
R. Cropland	NE	NE	NE				NE,
C Grassland	NE	NE	NE				NE,
D. Wetlands	NE	NE	NE				NE,
E Settlements	NE	NE	NE				NE,
E. Other Land	NE	NE	NE				NE,
G Other	NE	NE	NE				NE,
6. Waste	3.53	3 303 13	384.63				3 691 29
A. Solid Waste Disposal on Land	NA.NO	2 464.00	0.00				2 464.00
B. Waste-water Handling		839.12	384.47				1 223.60
C. Waste Incineration	3.53	0.01	0.16				3.69
D. Other	NO	NO	NO				NO.
7. Other (as specified in Summary 1.A)	NE	NE	NE	NE	NE	NE	NE.
······································							,
Memo Items: (4)							
International Bunkers	NE	NE	NE				NE.
Aviation	NE	NE	NE				NE,
Marine	NE	NE	NE				NE.
Multilateral Operations	NE	NE	NE				NE,
CO2 Emissions from Biomass	NE						NE,
							· · · · ·
	Total CO2 Equ	ivalent Emissi	ons without La	and Use, Land	-Use Change	and Forestry	120 331.49
	Total CO2	Equivalent Em	issions with La	and Use, Land	I-Use Change	and Forestry	NE.

Inventory 2010 Submission 2011 v1.0 Hungary

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES			CO2 e	quivalent (Gg)		
Total (Net Emissions) (1)	51 555.91	8 246.61	6 699.73	953.67	1.72	234.73	67 692.37
1. Energy	48 662.16	2 299.83	539.37				51 501.35
A. Fuel Combustion (Sectoral Approach)	48 562.54	231.77	539.14				49 333.45
1. Energy Industries	16 636.45	23.63	79.13				16 739.21
Manufacturing Industries and Construction	5 550.16	12.50	18.41				5 581.07
3. Transport	11 074.64	20.19	355.43				11 450.25
4. Other Sectors	IE	IE	IE				IE,
5. Other	15 301.29	175.45	86.17				15 562.91
B. Fugitive Emissions from Fuels	99.62	2 068.05	0.23				2 167.91
1. Solid Fuels	IE,NA,NO	18.17	IE				18.17
2. Oil and Natural Gas	99.62	2 049.88	IE				2 149.50
2. Industrial Processes	2 777.67	24.98	14.81	953.67	1.72	234.73	4 007.58
A. Mineral Products	1 370.46	NA,NO	NE				1 370.46
B. Chemical Industry	390.24	24.98	14.81335				430.04
C. Metal Production	216.89	IE,NA,NO	NA		IE	IE	216.89
D. Other Production	NO	0.00	0.00				0
E. Production of Halocarbons and SF6				IE	IE	IE	IE,
F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	IE,
G. Other	800.07	NO	NO	IE	IE	IE	800.07
3. Solvent and Other Product Use	47.91		292.18399				340.09
4. Agriculture		2 496.56	5 651.73				8 148.29
A. Enteric Fermentation		1 546.40					1 546.40
B. Manure Management		938.75	932.08				1 870.83
C. Rice Cultivation		11.41					11.41
D. Agricultural Soils(3)		NA,NO	4 719.65				4 719.65
E. Prescribed Burning of Savannas		NE	NE				NE,
F. Field Burning of Agricultural Residues		NA,NO	NA,NO				NA,NO,
G. Other		NE	NE				NE,
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE,
A. Forest Land	NE	NE	NE				NE,
B. Cropland	NE	NE	NE				NE,
C. Grassland	NE	NE	NE				NE,
D. Wetlands	NE	NE	NE				NE,
E. Settlements	NE	NE	NE				NE,
F. Other Land	NE	NE	NE				NE,
G. Other	NE	NE	NE				NE,
6. Waste	68.17	3 425.24	201.63				3 695.05
A. Solid Waste Disposal on Land	NA,NO	2 973.40	0.00				2 973.40
B. Waste-water Handling	00.47	451.06	199.68				650.74
C. Waste Incineration	68.17	0.78	1.96				70.91
D. Other	NA	NA	NA				NA,
7. Other (as specified in Summary 1.A)	NE	NE	NE	NE	NE	NE	NE,
Memo Items: (4)							
International Bunkers	NE	NE	NE				NE,
Aviation	NE	NE	NE				NE,
	NE	NE	NE				NE,
Multilateral Operations	NE	NE	NE				NE,
CO2 EIIIISSIONS from Biomass	NE						NE,
T - 10			have based 22			ad Eastar	07 000 07
	02 Equivalent I	Emissions Wit	nout Land Us	e, Land-Use	e Changé ai	nu Forestry	67 692.37
1012	a CO2 Equivale		with Land US	e, Lana-Use	e Unangé ai	nu Forestry	NE,

Inventory 2010 Submission 2011 v1.0 Ireland

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES			CO2 eq	uivalent (G	g)		
Total (Net Emissions) (1)	41 088.93	11 776.63	7 116.74	506.78	46.01	63.98	60 599.06
1. Energy	39 727.81	248.47	364.43				40 340.71
A. Fuel Combustion (Sectoral Approach)	39 727.81	199.54	364.43				40 291.78
1. Energy Industries	12 326.57	6.38	132.30				12 465.24
2. Manufacturing Industries and Construction	5 273.24	8.21	18.06				5 299.50
3. Transport	12 165.20	19.59	115.83				12 300.62
4. Other Sectors	IE	IE	IE				IE,
5. Other	9 962.80	165.36	98.25				10 226.41
B. Fugitive Emissions from Fuels	0.00	48.93	NO				48.93
1. Solid Fuels	NO	NO	IE				IE,NO,
Oil and Natural Gas	0.00	48.93	IE				48.93
2. Industrial Processes	1 289.71	0.00	0.00	506.78	46.01	63.98	1 906.48
A. Mineral Products	1 289.71	NO	NE				1 289.71
B. Chemical Industry	0.00	0.00	0				0.00
C. Metal Production	NO	NO	NO		IE	IE	IE,NO,
D. Other Production	NE	0.00	0.00				0
E. Production of Halocarbons and SF6				IE	IE	IE	IE,
F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	IE,
G. Other	NO	NO	NO	IE	IE	IE	IE,NO,
3. Solvent and Other Product Use	71.41		NA,NE				71.41
4. Agriculture		10 455.30	6 603.94				17 059.25
A. Enteric Fermentation		8 393.36					8 393.36
B. Manure Management		2 061.95	355.76				2 417.71
C. Rice Cultivation		NO					NO,
D. Agricultural Soils(3)		NE,NO	6 248.18				6 248.18
E. Prescribed Burning of Savannas		NE	NE				NE,
F. Field Burning of Agricultural Residues		NO	NO				NO,
G. Other		NE	NE				NE,
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE,
A. Forest Land	NE	NE	NE				NE,
B. Cropland	NE	NE	NE				NE,
C. Grassland	NE	NE	NE				NE,
D. Wetlands	NE	NE	NE				NE,
E. Settlements	NE	NE	NE				NE,
F. Other Land	NE	NE	NE				NE,
G. Other	NE	NE	NE				NE,
6. waste	NA,NO,	1 072.86	148.37				1 221.23
A. Solid Waste Disposal on Land	NA,NO	1 056.83	0.00				1 056.83
B. Waste hairparetien	NO	16.03	146.37				164.40
C. Waste incineration	NO	NO	NO				NO,
D. Other	NO	NU	NO	NE			NO,
7. Other (as specified in Summary 1.A)	INE	NE	NE	NE	NE	NE	NE,
Mama Itama (4)							
Memo Items: (4)	NE	NE					NE
	NE	NE	NE				NE,
Marino	INE	INE NE	INE				INE,
Multilateral Operations	NE	NE	NE				NE,
CO2 Emissions from Biomass	NE	NE	NE				NE,
	INE						INE,
Toto		ot Emissions w	ithout Land Lla	o Lond Lloy	Change of	d Forestry	60 500 06
10la		alont Emissions W	a with Lond Lo	o Lond Lon	Change al	ad Forestry	00 399.00
			s with Land US	e, Lanu-US	e onange al	iu roiestry	INE,

Inventory 2010 Submission 2011 v1.0 Italy

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total	
SINK CATEGORIES	CO2 equivalent (Gg)							
Total (Net Emissions) (1)	421 026.05	36 574.24	27 357.45	8 635.96	217.81	328.33	494 139.83	
1. Energy	399 266.45	6 306.11	4 745.62				410 318.17	
A. Fuel Combustion (Sectoral Approach)	396 935.42	1 308.29	4 733.78				402 977.50	
1. Energy Industries	129 950.32	105.62	513.47				130 569.41	
2. Manufacturing Industries and Construction	64 029.18	118.64	1 400.22				65 548.03	
3. Transport	116 010.82	309.59	1 053.25				117 373.66	
4. Other Sectors	IE	IE	IE				IE,	
5. Other	86 945.10	774.44	1 766.86				89 486.40	
B. Fugitive Emissions from Fuels	2 331.02	4 997.82	11.84				7 340.68	
1. Solid Fuels	NA	67.03	IE				67.03	
Oil and Natural Gas	2 331.02	4 930.79	IE				7 261.81	
2. Industrial Processes	20 381.65	47.32	992.35	8 635.96	217.81	328.33	30 603.42	
A. Mineral Products	17 616.05	NA	NE				17 616.05	
B. Chemical Industry	1 146.02	5.93	992.35				2 144.30	
C. Metal Production	1 619.58	41.40	NA		IE	IE	1 660.97	
D. Other Production	NA	0.00	0.00				0.00	
E. Production of Halocarbons and SF6				IE	IE	IE	IE,	
F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	IE,	
G. Other	NA	NA	NA	IE	IE	IE	IE,NA,	
3. Solvent and Other Product Use	1 190.58		671.01				1 861.59	
4. Agriculture		14 741.48	18 854.88				33 596.36	
A. Enteric Fermentation		10 303.29					10 303.29	
B. Manure Management		2 870.76	3 738.93				6 609.68	
C. Rice Cultivation		1 554.90					1 554.90	
D. Agricultural Soils(3)		NA	15 112.02				15 112.02	
E. Prescribed Burning of Savannas		NE	NE				NE,	
F. Field Burning of Agricultural Residues		12.53	3.93				16.46	
G. Other		NE	NE				NE,	
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE,	
A. Forest Land	NE	NE	NE				NE,	
B. Cropland	NE	NE	NE				NE,	
C. Grassland	NE	NE	NE				NE,	
D. Wetlands	NE	NE	NE				NE,	
E. Settlements	NE	NE	NE				NE,	
F. Other Land	NE	NE	NE				NE,	
G. Other	NE	NE	NE				NE,	
6. Waste	187.38	15 479.33	2 093.58				17 760.29	
A. Solid Waste Disposal on Land	NA,NO	12 475.49	0.00				12 475.49	
B. Waste-water Handling		2 723.09	1 964.37				4 687.46	
C. Waste Incineration	187.38	276.47	129.22				593.06	
D. Other	NA	4.28	NA				4.28	
7. Other (as specified in Summary 1.A)	NE	NE	NE	NE	NE	NE	NE,	
Memo Items: (4)								
International Bunkers	NE	NE	NE				NE,	
Aviation	NE	NE	NE				NE,	
Marine	NE	NE	NE				NE,	
Multilateral Operations	NE	NE	NE				NE,	
CO2 Emissions from Biomass	NE						NE,	
	Total CO2 Equ	uivalent Emissi	ons without La	ind Use, Land	-Use Change	and Forestry	494 139.83	
	Total CO2 I	Equivalent Emi	ssions with La	ind Use, Land	-Use Change	and Forestry	NE,	

Italy provided its own early estimate for 2010 (see Table 5). This estimate has been used to assess progress towards targets.

Inventory 2010 Submission 2011 v1.0 Lithuania

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES			CO	2 equivalent	(Gg)		
Total (Net Emissions) (1)	13 754.79	3 567.92	4 970.32	37.89	NA,NE,NO,	5.00	22 335.94
1. Energy	12 085.75	414.44	134.11				12 634.30
A. Fuel Combustion (Sectoral Approach)	12 076.16	164.03	134.08				12 374.26
1. Energy Industries	5 697.39	7.97	21.99				5 727.36
2. Manufacturing Industries and Construction	1 110.01	4.31	5.80				1 120.12
3. Transport	4 501.76	13.10	72.28				4 587.14
4. Other Sectors	IE	IE	IE				IE,
5. Other	767.00	138.64	34.01				939.65
B. Fugitive Emissions from Fuels	9.60	250.41	0.03				260.03
1. Solid Fuels	NO	NO	IE				IE,NO,
2. Oil and Natural Gas	9.60	250.41	IE				260.00
2. Industrial Processes	1 578.20	0.00	2 024.30	37.89	NA,NO	5.00	3 645.40
A. Mineral Products	321.11	NA,NE,NO	NE				321.11
B. Chemical Industry	1 251.90	0.00	2 024.30				3 276.20
C. Metal Production	5.19	NO	NO		IE	IE	5.19
D. Other Production	NE	0.00	0.00				0.00
E. Production of Halocarbons and SF6				IE	IE	IE	IE,
F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	IE,
G. Other	NA	NA	NA	IE	IE	IE	IE,NA,
3. Solvent and Other Product Use	90.19		NA,NE				90.19
4. Agriculture		1 848.03	2 736.73				4 584.76
A. Enteric Fermentation		1 289.57					1 289.57
B. Manure Management		558.47	307.80				866.26
C. Rice Cultivation		NO					NO,
D. Agricultural Soils(3)		NA,NE	2 428.93				2 428.93
E. Prescribed Burning of Savannas		NE	NE				NE,
F. Field Burning of Agricultural Residues		NO	NO				NO,
G. Other		NE	NE				NE,
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE,
A. Forest Land	NE	NE	NE				NE,
B. Cropland	NE	NE	NE				NE,
C. Grassland	NE	NE	NE				NE,
D. Wetlands	NE	NE	NE				NE,
E. Settlements	NE	NE	NE				NE,
F. Other Land	NE	NE	NE				NE,
G. Other	NE	NE	NE				NE,
6. Waste	0.64	1 305.45	75.19				1 381.28
A. Solid Waste Disposal on Land	NA,NE	830.31	0.00				830.31
B. Waste-water Handling		475.14	75.14				550.28
C. Waste Incineration	0.64	NE	0.05				0.70
D. Other	NA	NA	NA				NA,
7. Other (as specified in Summary 1.A)	NE	NE	NE	NE	NE	NE	NE,
Memo Items: (4)							
International Bunkers	NE	NE	NE				NE,
Aviation	NE	NE	NE				NE,
Marine	NE	NE	NE				NE,
Multilateral Operations	NE	NE	NE				NE,
CO2 Emissions from Biomass	NE						NE,
Total	CO2 Equivaler	nt Emissions	without Land	d Use, Land-l	Jse Change a	and Forestry	22 335.94
То	tal CO2 Equiva	alent Emissio	ins with Land	d Use, Land-l	Jse Change a	and Forestry	NE,

Inventory 2010 Submission 2011 v1.0 Luxembourg

SINK CATEGORIES CO2 equivalent (6p) Total (NE Emissions) (1) 11 227.32 443.78 65.05 6.06 0.22 7.88 12 26.67 1. Energy 10 670.42 60.72 100.68 10 783 12 78.67 1. Energy Industries 12 20.92 1.42 2.66 11 783 11 783 2. Manutchuring Industries and Construction 117.44 2.05 11 784.33 11 783 11 865.23 11 783 11 865.23 11 783.34 2.06 11 863.04 42.49 12 86.67 12 86.67 11 865.24 12 86.67 11 865.24 12 86.67 11 865.24 12 86.67 11 865.24 12 86.67<	GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
Total (Net Emissions) (1) 11 287.32 44.378 459.53 68.06 0.22 7.38 11 287.32 A. Fuel Combustion (Sectoral Approach) 10 670.35 18.30 100.68 1077833 1. Energy 10670.35 18.30 100.68 1077833 2. Manufacturing industries and Construction 1173.44 2.05 11.03 63.49.37 4. Other Sectors E 2.04585 S S A </td <td>SINK CATEGORIES</td> <td></td> <td></td> <td>CO</td> <td>2 equivalen</td> <td>t (Gg)</td> <td></td> <td></td>	SINK CATEGORIES			CO	2 equivalen	t (Gg)		
1. Energy 10 670.42 60.72 100.68 10 831.82 A. Fuel Combustion (Sectoral Approach) 10 670.32 1.42 2.60 11 789.33 1. Energy Industries and Construction 1173.44 2.05 1103 1185.82 3. Transport 6 2271.14 6.32 71.91 6 349.37 4. Other Sectors 2 024.85 6.51 15.14 2 048.50 B. Fugitive Emissions from Fuels 0.07 42.42 NANO 4 2.48 1. Solid Fuels NO NO 116 2 048.50 J. Industrial Processes 605.42 0.00 66.06 0.22 7.88 681.53 A. Mineral Production 154.02 NAN NE 2 0.00	Total (Net Emissions) (1)	11 287.23	443.78	459.53	68.06	0.22	7.88	12 266.70
A. Fuel Combustion (Sectoral Approach) 10 670.35 11.30 100.68 10778.33 1. Energy Industries and Construction 1173.44 2.260 11.03 11204.95 2. Manufacturing Industries and Construction 1173.44 2.25 11.03 6184.95 3. Transport 6 2271.41 6.32 77.91 6 249.45 5. Other 2024.85 8.51 151.44 2048.55 B. Fugine Emissions from Fuels 0.07 42.42 NANO 12 248.45 1. Sold Fuels 0.07 42.42 NANO 12 248.45 2. Industrial Processes 605.42 10.00 0.00 0.00 0.00 0.00 2. Industrial Processes 605.42 NANO 112 11.81 11.81 11.81 11.81 11.81 2. Other Production 150.40 NA NA 112 11.81 11	1. Energy	10 670.42	60.72	100.68				10 831.82
1. Energy Industries and Construction 1 1204.39 11204.39 2. Manufacturing Industries and Construction 6 271.14 6.32 71.91 6.349.37 4. Other Sectors E E E E E 6.349.37 4. Other Sectors 112.43.48 2.024.85 8.51 15.14 2.048.59 B. Fugitive Emissions from Fuels 0.07 42.42 NA.NO NE 1.8.047 1. Solid Fuels NO NO NE E E E 1.8.047 2. Otl and Natural Gas 0.07 42.42 IE 0.02 7.88 681.58 A. Minoral Products 451.40 NO NA E E 154.02 NA.NO NA E 154.02 0.00	A. Fuel Combustion (Sectoral Approach)	10 670.35	18.30	100.68				10 789.33
2. Manufacturing Industries and Construction 1 173.44 2.05 11.03 1186.25 3. Transport 4. Other Sectors IE IC IE IE <td>1. Energy Industries</td> <td>1 200.92</td> <td>1.42</td> <td>2.60</td> <td></td> <td></td> <td></td> <td>1 204.95</td>	1. Energy Industries	1 200.92	1.42	2.60				1 204.95
3. Transport 6 271.14 6.32 71.91 6 6 349.37 4. Other Sectors 1 1 1 5.0 1 1.5.14 2.04.85 8.51 15.14 2.04.85 B. Fugitbe Emissions from Fuels 0.07 42.24 1 1 5.01 1 1.5.14 2.04.85 1 1.5.14 2.04.85 1 1.5.14 2.04.85 1 1.5.14 2.04.85 1.5.14 2.04.85 1.5.14 2.04.85 1.5.14 2.04.85 1.5.14 2.04.85 1.5.14 2.04.85 1.5.14 2.04.85 1.5.14 2.04.85 1.5.14 2.04.85 1.5.14 2.04.85 1.5.14 <td< td=""><td>Manufacturing Industries and Construction</td><td>1 173.44</td><td>2.05</td><td>11.03</td><td></td><td></td><td></td><td>1 186.52</td></td<>	Manufacturing Industries and Construction	1 173.44	2.05	11.03				1 186.52
4. Other Sectors IE	3. Transport	6 271.14	6.32	71.91				6 349.37
5. Other 2 024.85 8.51 15.14 2 048.50 B. Fugitos Emissions from Fuels NO	4. Other Sectors	IE	IE	IE				IE,
B. Fugitive Emissions from Fuels 0.07 42.42 N.N.O NO 42.42 1. Solidi Fuels NO NO NE 42.42 2. Old and Natural Gas 0.07 42.42 IE 42.43 2. Industrial Processes 605.42 0.00 68.06 0.22 7.88 681.58 A. Mineral Products 451.40 NO NE 451.40 NO NE 42.49 2. Industrial Processes 605.42 0.00 0.00 68.06 0.22 7.88 681.58 4. Mineral Production 154.02 NANNO NA IE IE IE 154.02 NANO NA IE IE 154.02 NANO NA IE IE <t< td=""><td>5. Other</td><td>2 024.85</td><td>8.51</td><td>15.14</td><td></td><td></td><td></td><td>2 048.50</td></t<>	5. Other	2 024.85	8.51	15.14				2 048.50
1. Solid Fuels NO NO IE IE IE IE 2. Order Natural Arcs 0.07 42.42 IE 42.49 2.0 42.49 2.0 42.49 2.0 42.49 2.0 42.49 2.0 42.49 45.140 NO NA 45.140 NO NA 45.140 NO NA 45.140 NO NO 45.140 NO NO 45.140 NO NO 16.00 0.00 0.00 1.00 <td< td=""><td>B. Fugitive Emissions from Fuels</td><td>0.07</td><td>42.42</td><td>NA,NO</td><td></td><td></td><td></td><td>42.49</td></td<>	B. Fugitive Emissions from Fuels	0.07	42.42	NA,NO				42.49
2. Oli and Natural Gas 0.07 42.42 IE 0 42.49 2. Industrial Products 451.40 NO NE 0.27.88 681.58 A. Mineral Products 451.40 NO 0.00 0.00 0.00 0.00 C. Metal Production 154.02 NANO NA IE IE 154.02 NANO NA IE IE 164.02 0.00 <t< td=""><td>1. Solid Fuels</td><td>NO</td><td>NO</td><td>IE</td><td></td><td></td><td></td><td>IE,NO,</td></t<>	1. Solid Fuels	NO	NO	IE				IE,NO,
2. Industrial Processes 605.42 0.00 6.0.6 0.22 7.88 681.58 A. Mineral Production 451.40 NO NE 9 481.40 B. Chemical Industry 0.00 0.00 0.00 0.00 0.00 0.00 C. Metal Production 1154.02 NA,NO NA IE IE IE 1E	2. Oil and Natural Gas	0.07	42.42	IE				42.49
A. Mineral Productis 451.40 NO NE 451.40 B. Chemical Industry 0.00 0.00 0.00 0.00 C. Metal Production 154.02 NA NO NA IE IE IE 154.02 D. Other Production Halocarbons and SF6 IE	2. Industrial Processes	605.42	0.00	0.00	68.06	0.22	7.88	681.58
B. Chemical Industry 0.00 0.00 0.00 0.00 C. Metal Production 154.02 NANO NA IE IE 154.02 D. Other Production of Halocarbons and SF6 NO 0.00 0.00 0.00 0.00 E. Production of Halocarbons and SF6 (2) IE	A. Mineral Products	451.40	NO	NE				451.40
C. Metal Production 154.02 NA.NO NA IE IE IE 15 15 0.00	B. Chemical Industry	0.00	0.00	0.00				0.00
D. Other Production NO 0.00 0.00 0.00 E. Production of Halocarbons and SF6 IE	C. Metal Production	154.02	NA,NO	NA		IE	IE	154.02
E. Production of Halocarbons and SF6 IE I	D. Other Production	NO	0.00	0.00				0.00
F. Consumption of Halocarbons and SF6 (2) NA NA NA NA IE	E. Production of Halocarbons and SF6				IE	IE	IE	IE,
G. Other NA NA NA NA NA NA NA NA NA NE IE	F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	IE,
3. Solvent and Other Product Use 11.39 4.69 16.08 4. Agriculture 336.48 335.15 67152 A. Enteric Fermentation 239.67 239.67 239.67 B. Manure Management 96.81 25.98 67152 C. Rice Cultivation NA,NO 605.81 25.98 67152 D. Agricultural Solis(3) NA,NE 309.17 0 309.17 E. Prescribed Burning of Savannas NE NE NE NE F. Field Burning of Agricultural Residues NO NO 0 NO,0 G. Other NE NE NE NE NE S. Land Use, Land-Use Change and Forestry(1) NE NE NE NE NE G. Grassland NE NE NE NE NE NE NE D. Wetlands NE NE NE NE NE NE NE G. Other NE	G. Other	NA	NA	NA	IE	IE	IE	IE,NA,
4. Agriculture 336.48 335.15 671.62 A. Enteric Fermentation 239.67 239.67 239.67 B. Manure Management 96.81 25.98 122.79 C. Rice Cultivation NA.NO NA.NO NA.NO D. Agricultural Solis(3) NA.NE 309.17 309.17 E. Prescribed Burning of Savannas NE NE NE F. Field Burning of Agricultural Residues NO NO NO, G. Other NE NE NE NE S. Land Use, Land-Use Change and Forestry(1) NE NE NE NE S. Cardussiand NE NE NE NE NE S. Cardussiand NE NE NE NE NE D. Wetlands NE NE NE NE NE D. Wetlands NE NE NE NE NE G. Other NE NE NE NE NE G. Other NE NE NE NE NE G. Wastends NE NE NE	3. Solvent and Other Product Use	11.39		4.69				16.08
A. Enteric Fermentation 239.67 239.67 239.67 B. Manure Management 96.81 25.98 122.79 C. Rice Cultivation NA.NO NA.NO NA.NO, D. Agricultural Solis(3) NA.NE 309.17 309.17 E. Prescribed Burning of Savannas NE NE NE F. Field Burning of Agricultural Residues NO NO NO, G. Other NE NE NE NE S. Land Use, Land-Use Change and Forestry(1) NE NE NE NE, S. Land Use, Land-Use Change and Forestry(1) NE NE NE NE, A. Forest Land NE NE NE NE, G. Grassland NE NE NE, NE, D. Wetlands NE NE NE, NE, E. Settlements NE NE NE, NE, G. Other NE NE NE, NE, G. Grassland NE NE NE, NE, G. Other NE NE NE, NE, G. Other	4. Agriculture		336.48	335.15				671.62
B. Manure Management 96.81 25.98 122.79 C. Rice Cultivation NA,NO NA,NO NA,NO D. Agricultural Solis(3) NA,NE 309.17 309.17 E. Prescribed Burning of Agricultural Residues NO NO NO G. Other NE NE NE NE S. Land Use, Land-Use Change and Forestry(1) NE NE NE NE A. Forest Land NE NE NE NE NE, B. Cropland NE NE NE NE, NE, C. Grassland NE NE NE NE, NE, D. Wetlands NE NE NE NE, NE, G. Other NE NE NE NE, NE, G. Other NE NE NE NE, NE, NE, G. Other NE NE NE NE, NE, NE, NE, G. Waste Disposal on Land NA,NO, 36.13 0.00 36.13 36.13 14.27 14.27 14.27	A. Enteric Fermentation		239.67					239.67
C. Rice Cultivation NA,NO NA,NO NA,NO NA,NO D. Agricultural Soils(3) NA,NE 309.17 309.17 309.17 E. Prescribed Burning of Savannas NE NE NE NE NE F. Field Burning of Agricultural Residues NO NO NO NO, NO, G. Other NE NE NE NE NE NE 5. Land Use, Land-Use Change and Forestry(1) NE	B. Manure Management		96.81	25.98				122.79
D. Agricultural Solis(3) NA,NE 309.17 309.17 E. Prescribed Burning of Savannas NE NE NE F. Field Burning of Agricultural Residues NO NO NO G. Other NE NE NE NE S. Land Use, Land-Use Change and Forestry(1) NE NE NE NE A. Forest Land NE NE NE NE NE B. Cropland NE NE NE NE NE D. Weltands NE NE NE NE NE C. Grassland NE NE NE NE NE NE D. Weltands NE NE NE NE NE NE NE G. Other NE NE <td< td=""><td>C. Rice Cultivation</td><td></td><td>NA,NO</td><td></td><td></td><td></td><td></td><td>NA,NO,</td></td<>	C. Rice Cultivation		NA,NO					NA,NO,
E. Prescribed Burning of Savannas NE NE NE NE F. Field Burning of Agricultural Residues NO NO NO NO G. Other NE NE NE NE NE 5. Land Use, Land-Use Change and Forestry(1) NE NE NE NE NE 6. Other NE NE NE NE NE NE 6. Crassland NE NE NE NE NE NE D. Wetlands NE NE NE NE NE NE NE G. Other NE N	D. Agricultural Soils(3)		NA,NE	309.17				309.17
F. Field Burning of Agricultural Residues NO NO NO, G. Other NE NE NE NE, S. Land Use, Land-Use Change and Forestry(1) NE NE NE NE, A. Forest Land NE NE NE NE, B. Cropland NE NE NE, NE, G. Grassland NE NE NE, NE, D. Wetlands NE NE NE, NE, G. Other NA,NO, 36.13 9.00 36.13 B. Waste-water Handling 3.02 11.25 14.27 C. Waste Incineration IE IE IE, D. Other NO 7.43 7.77 15.20 7. Other (as specified in Summary 1.A) NE NE NE,	E. Prescribed Burning of Savannas		NE	NE				NE,
G. Other NE NE NE NE NE NE NE 5. Land Use, Land-Use Change and Forestry(1) NE NE NE NE NE NE, A. Forest Land NE NE NE NE NE NE, B. Cropland NE NE NE NE NE, NE, C. Grassland NE NE NE NE, NE, NE, D. Wetlands NE NE NE NE, NE, NE, E. Settlements NE NE NE NE, NE, NE, G. Other NE NE NE NE, NE, NE, G. Other NE NE NE NE, NE, NE, G. Other IL, NA, NO, 36.13 0.00 G. 636.13 B. Waste-water Handling 3.02 11.25 IL IL, 27 IL, 28 IL IL, 27 IL	F. Field Burning of Agricultural Residues		NO	NO				NO,
S. Land Use, Land-Use Change and Forestry(1) NE NE NE NE NE NE NE, A. Forest Land NE NE NE NE NE NE, B. Cropland NE NE NE NE NE, C. Grassland NE NE NE NE, NE, D. Wetlands NE NE NE NE, NE, E. Settlements NE NE NE NE, S. Copland NE, G. Other NE NE NE NE NE, S. Copland NE, G. Other NE NE NE NE NE, S. Copland NE, G. Other NE NE NE NE NE, S. Copland NE, G. Other IE,NA,NO, 46.58 19.02 O S. 65.59 A. Solid Waste Disposal on Land NA,NO 36.13 0.00 O 14.27 C. Waste Incineration IE IE IE IE IE IE IE IE IE NE <td< td=""><td>G. Other</td><td></td><td>NE</td><td>NE</td><td></td><td></td><td></td><td>NE,</td></td<>	G. Other		NE	NE				NE,
A. Forest Land NE NE NE NE NE B. Cropland NE NE NE NE NE, C. Grassland NE NE NE NE, D. Wetlands NE NE NE NE, D. Wetlands NE NE NE, NE, E. Settlements NE NE NE, NE, G. Other NE NE NE, NE, G. Other IE,NA,NO, 46.58 19.02 65.59 A. Solid Waste Disposal on Land NA,NO, 36.61 0.00 36.61 B. Waste-water Handling 3.02 11.25 14.27 C. Waste Incineration IE IE IE IE, D. Other NO 7.43 7.77 15.20 15.20 T. Other (as specified in Summary 1.A) NE NE NE NE, Memo Items: (4) International Bunkers NE NE NE, Marine NE NE NE NE, NE, Mutillateral Operations NE	5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE,
B. Cropland NE NE NE NE NE NE, C. Grassland NE NE NE NE NE NE, D. Wetlands NE NE NE NE NE, E. Settlements NE NE NE NE, F. Other Land NE NE NE NE, G. Other NE NE NE NE, G. Waste Disposal on Land NA,NO, 46.53 19.02 0 65.59 A. Solid Waste Disposal on Land NA,NO 36.13 0.00 0 36.13 B. Waste-water Handling 3.02 11.25 14.27 14.27 C. Waste Incineration IE IE IE IE IE D. Other NO 7.43 7.77 15.20 15.20 7. Other (as specified in Summary 1.A) NE NE NE NE, Memo Items: (4) International Bunkers NE NE, NE, Marine NE NE NE NE, NE, Multilateral	A. Forest Land	NE	NE	NE				NE,
C. GrasslandNENENENENED. WetlandsNENENENENE,E. SettlementsNENENENENE,F. Other LandNENENENENE,G. OtherNENENENENE,6. WasteIE,NA,NO,46.5819.02065.59A. Solid Waste Disposal on LandNA,NO36.130.00036.13B. Waste-water Handling3.0211.25014.27C. Waste IncinerationIEIEIE1ED. OtherNO7.437.7715.207. Other (as specified in Summary 1.A)NENENENEMemo Items: (4)NENENENE,International BunkersNENENENE,AviationNENENENE,Multilateral OperationsNENENENE,CO2 Equivalent Emissions with Land Use, Land-Use Change and Forestry12 266.70Total CO2 Equivalent Emissions with Land Use, Land-Use Change and ForestryNE,Total CO2 Equivalent Emissions with Land Use, Land-Use Change and Forestry	B. Cropland	NE	NE	NE				NE,
D. WetlandsNENENENE,E. SettlementsNENENENE,F. Other LandNENENENE,G. OtherNENENENE,G. OtherNENENENE,6. WasteIE,NA,NO,46.5819.0265.59A. Solid Waste Disposal on LandNA,NO36.130.0036.13B. Waste-water Handling3.0211.25114.27C. Waste IncinerationIEIEIEIE,D. OtherNO7.437.77152.207. Other (as specified in Summary 1.A)NENENENE,Memo Items: (4)NENENENE,International BunkersNENENE,NE,AviationNENENENE,NE,Multilateral OperationsNENENENE,C2 Emissions from BiomassNENENE,NE,Total CO2 Equivalent Emissions with Land Use, Land-Use Change and Forestry12 266.70Total CO2 Equivalent Emissions with Land Use, Land-Use Change and ForestryNE,	C. Grassland	NE	NE	NE				NE,
E. Settlements NE NE NE NE NE, F. Other Land NE NE NE NE NE, G. Other NE NE NE NE NE, G. Other NE NE NE NE, NE, 6. Waste IE,NA,NO, 46.58 19.02 65.59 A. Solid Waste Disposal on Land NA,NO 36.13 0.00 36.13 B. Waste-water Handling 3.02 11.25 0 14.27 C. Waste Incineration IE IE IE 0 11.27 D. Other NO 7.43 7.77 0 15.20 7. Other (as specified in Summary 1.A) NE NE NE NE Memo Items: (4) ME NE NE NE NE, International Bunkers NE NE NE NE, NE, Marine NE NE NE NE, NE, Multilateral Operations NE NE NE, NE, CO2 Emissions from Biomass NE NE,<	D. Wetlands	NE	NE	NE				NE,
F. Other Land NE NE NE NE NE, G. Other NE NE NE NE NE, 6. Waste IE,NA,NO, 46.58 19.02 O O 65.59 A. Solid Waste Disposal on Land NA,NO 36.13 0.00 36.13 36.13 B. Waste-water Handling 3.02 11.25 Image: Comparison of the im	E. Settlements	NE	NE	NE				NE,
G. OtherNENENENE6. WasteIE,NA,NO,46.5819.026.5.59A. Solid Waste Disposal on LandNA,NO36.130.0036.13B. Waste-water Handling3.0211.2514.27C. Waste IncinerationIEIEIEIED. OtherNO7.437.771015.207. Other (as specified in Summary 1.A)NENENENENEMemo Items: (4)Image: Colspan="4">Image: Colspan="4">NENENEAviationNENENENENEMemo Items: (4)Image: Colspan="4">Image: Colspan="4">NENENEMemo Items: (4)NENENENENEMemo Items: (4)Image: Colspan="4">NENENEInternational BunkersNENENENENEAviationNENENENENENEMultilateral OperationsNE	F. Other Land	NE	NE	NE				NE,
6. Waste IE,NA,NO, 46.58 19.02 6. 65.59 A. Solid Waste Disposal on Land NA,NO 36.13 0.00 36.13 B. Waste-water Handling 3.02 11.25 14.27 C. Waste Incineration IE IE IE IE D. Other NO 7.43 7.77 Image: Constraint of the systematic of the systemati	G. Other	NE	NE	NE				NE,
A. Solid Waste Disposal on Land NA,NO 36.13 0.00 36.13 B. Waste-water Handling 3.02 11.25 14.27 C. Waste Incineration IE IE IE IE D. Other NO 7.43 7.77 15.20 7. Other (as specified in Summary 1.A) NE NE NE NE NE Memo Items: (4) Image: Comparison of the symptotic symptot	6. Waste	IE,NA,NO,	46.58	19.02				65.59
B. Waste-water Handling 3.02 11.25 14.27 C. Waste Incineration IE IE </td <td>A. Solid Waste Disposal on Land</td> <td>NA,NO</td> <td>36.13</td> <td>0.00</td> <td></td> <td></td> <td></td> <td>36.13</td>	A. Solid Waste Disposal on Land	NA,NO	36.13	0.00				36.13
C. Waste Incineration IE IE <t< td=""><td>B. Waste-water Handling</td><td></td><td>3.02</td><td>11.25</td><td></td><td></td><td></td><td>14.27</td></t<>	B. Waste-water Handling		3.02	11.25				14.27
D. Other NO 7.43 7.77 Image: Constraint of the system of the syst	C. Waste Incineration	IE	IE	IE				IE,
7. Other (as specified in Summary 1.A) NE NE NE NE NE NE NE NE NE Memo Items: (4) International Bunkers NE NE NE NE NE Aviation NE NE NE NE NE Marine NE NE NE NE Multilateral Operations NE NE NE NE CO2 Emissions from Biomass NE NE NE, Total CO2 Equivalent Emissions with Land Use, Land-Use Change and Forestry 12 266.70 Total CO2 Equivalent Emissions with Land Use, Land-Use Change and Forestry NE,	D. Other	NO	7.43	7.77				15.20
Memo Items: (4) Image: Constraint of the image: Co	7. Other (as specified in Summary 1.A)	NE	NE	NE	NE	NE	NE	NE,
Memo Items: (4) Image: Constraint of the second secon								
International Bunkers NE NE </td <td>Memo Items: (4)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Memo Items: (4)							
Aviation NE NE NE NE NE, Marine NE NE NE NE, NE, Multilateral Operations NE NE NE OPE NE, CO2 Emissions from Biomass NE NE NE, NE, NE, Total CO2 Equivalent Emissions with out Land Use, Land-Use Change and Forestry 12 266.70 Total CO2 Equivalent Emissions with Land Use, Land-Use Change and Forestry NE,	International Bunkers	NE	NE	NE				NE,
Marine NE NE NE NE NE Multilateral Operations NE NE NE NE NE CO2 Emissions from Biomass NE NE Image: Color	Aviation	NE	NE	NE				NE,
Multilateral Operations NE	Marine	NE	NE	NE				NE,
CO2 Emissions from Biomass NE NE, Total CO2 Equivalent Emissions without Land Use, Land-Use Change and Forestry 12 266.70 Total CO2 Equivalent Emissions with Land Use, Land-Use Change and Forestry NE,	Multilateral Operations	NE	NE	NE				NE,
Total CO2 Equivalent Emissions without Land Use, Land-Use Change and Forestry 12 266.70 Total CO2 Equivalent Emissions with Land Use, Land-Use Change and Forestry NE,	CO2 Emissions from Biomass	NE						NE,
Total CO2 Equivalent Emissions without Land Use, Land-Use Change and Forestry 12 266.70 Total CO2 Equivalent Emissions with Land Use, Land-Use Change and Forestry NE,								
Total CO2 Equivalent Emissions with Land Use, Land-Use Change and Forestry NE,	Total CO2	Equivalent Em	issions with	nout Land L	Jse, Land-Us	se Change a	nd Forestry	12 266.70
	Total C	O2 Equivalent	Emissions	with Land L	Jse, Land-Us	se Change a	nd Forestry	NE,

Luxembourg provided its own early estimate for 2010 (see Table 5). This estimate has been used to assess progress towards targets.

Inventory 2010 Submission 2011 v1.0 Latvia

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES			CO2	equivalent	(Gg)		
Total (Net Emissions) (1)	7 695.72	1 966.46	1 716.87	94.65	NA,NE,NO,	13.11	11 486.80
1. Energy	7 225.27	396.67	127.38				7 749.33
A. Fuel Combustion (Sectoral Approach)	7 225.27	289.95	127.38				7 642.61
1. Energy Industries	2 455.13	5.19	10.16				2 470.47
2. Manufacturing Industries and Construction	1 139.47	6.11	10.31				1 155.89
3. Transport	2 721.68	4.31	47.11				2 773.11
4. Other Sectors	IE	IE	IE				IE,
5. Other	908.99	274.35	59.80				1 243.13
B. Fugitive Emissions from Fuels	0.00	106.72	NO				106.72
1. Solid Fuels	NO	NO	IE				IE,NO,
2. Oil and Natural Gas	0.00	106.72	IE				106.72
2. Industrial Processes	446.57	0.05	0.00	94.65	NA,NO	13.11	554.37
A. Mineral Products	435.62	,NA,NE,NO	NE				435.62
B. Chemical Industry	0.00	0.00	0.00				0.00
C. Metal Production	10.96	0.05	NO		IE	IE	11.00
D. Other Production	NA	0.00	0.00				0.00
E. Production of Halocarbons and SF6				IE	IE	IE	IE,
F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	IE,
G. Other	NO	NO	NA	IE	IE	IE	IE,NA,NO,
3. Solvent and Other Product Use	23.54		4.03				27.57
4. Agriculture		762.25	1 529.84				2 292.09
A. Enteric Fermentation		666.86					666.86
B. Manure Management		95.38	162.30				257.68
C. Rice Cultivation		NO					NO,
D. Agricultural Soils(3)		NA	1 367.54				1 367.54
E. Prescribed Burning of Savannas		NE	NE				NE,
F. Field Burning of Agricultural Residues		NO	NO				NO,
G. Other		NE	NE				NE,
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE,
A. Forest Land	NE	NE	NE				NE,
B. Cropland	NE	NE	NE				NE,
C. Grassland	NE	NE	NE				NE,
D. Wetlands	NE	NE	NE				NE,
E. Settlements	NE	NE	NE				NE,
F. Other Land	NE	NE	NE				NE,
G. Other	NE	NE	NE				NE,
6. Waste	0.34	807.48	55.62				863.44
A. Solid Waste Disposal on Land	NA,NO	593.32	0.00				593.32
B. Waste-water Handling		212.90	54.21				267.11
C. Waste Incineration	0.34	NE,NO	0.01				0.34
D. Other	NE	1.27	1.41				2.67
7. Other (as specified in Summary 1.A)	NE	NE	NE	NE	NE	NE	NE,
Memo Items: (4)							
International BUNKERS	NE	NE	NE				NE,
Aviation	NE	NE	NE				NE,
	NE	NE	NE				NE,
Multilateral Operations	NE	NE	NE				NE,
CO2 Emissions from Biomass	NE						NE,
		Fastanian	4h 4 ! !	les Les du	on Ohana	ad Faraat	11 100 00
	52 Equivalent	Emissions w	ithout Land I	use, Land-U	se Change a	ind Forestry	11 486.80
lota	CO2 Equivale	ent Emission	s with Land l	Use, Land-U	se Change a	ing Forestry	NE,

Inventory 2010 Submission 2011 v1.0 Malta

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES			CO2	equivalen	t (Gg)		
Total (Net Emissions) (1)	2 507.84	275.16	42.83	41.55	0.00	1.68	2 869.07
1. Energy	2 507.11	3.49	6.11				2 516.71
A. Fuel Combustion (Sectoral Approach)	2 507.11	3.49	6.11				2 516.71
1. Energy Industries	1 839.23	1.52	4.49				1 845.25
2. Manufacturing Industries and Construction	66.52	0.06	0.19				66.77
3. Transport	554.69	1.88	1.48				558.05
4. Other Sectors	IE	IE	IE				IE,
5. Other	46.67	0.02	-0.04				46.65
B. Fugitive Emissions from Fuels	0.00	0.00	NA				0.00
1. Solid Fuels	NA	NA	Ē				IE,NA,
2. Oil and Natural Gas	0.00	0.00	IE				0.00
2. Industrial Processes	0.25	0.00	0.00	41.55	0.00	1.68	43.49
A. Mineral Products	0.16	NO	NE				0.16
B. Chemical Industry	0.10	0.00	0.00				0.10
C. Metal Production	NA,NO	NA,NO	NA		IE	IE	IE,NA,NO,
D. Other Production	NA	0.00	0.00				0.00
E. Production of Halocarbons and SF6				IE	IE	IE	IE,
F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	IE,
G. Other	NA	NA	NA	IE	IE	IE	IE,NA,
3. Solvent and Other Product Use	NA		1.60				1.60
4. Agriculture		57.21	23.46				80.66
A. Enteric Fermentation		29.90					29.90
B. Manure Management		27.31	4.59				31.90
C. Rice Cultivation		NA,NO					NA,NO,
D. Agricultural Soils(3)		NA,NE	18.87				18.87
E. Prescribed Burning of Savannas		NE	NE				NE,
F. Field Burning of Agricultural Residues		NA,NO	NA,NO				NA,NO,
G. Other		NE	NE				NE,
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE,
A. Forest Land	NE	NE	NE				NE,
B. Cropland	NE	NE	NE				NE,
C. Grassland	NE	NE	NE				NE,
D. Wetlands	NE	NE	NE				NE,
E. Settlements	NE	NE	NE				NE,
F. Other Land	NE	NE	NE				NE,
G. Other	NE	NE	NE				NE,
6. Waste	0.47	214.47	11.66				226.61
A. Solid Waste Disposal on Land	NA	199.59	0.00				199.59
B. Waste-water Handling		14.88	11.44				26.32
C. Waste Incineration	0.47	0.00	0.22				0.70
D. Other	NO	NO	NO				NO,
7. Other (as specified in Summary 1.A)	NE	NE	NE	NE	NE	NE	NE,
Memo Items: (4)							
International Bunkers	NE	NE	NE				NE,
Aviation	NE	NE	NE				NE,
Marine	NE	NE	NE				NE,
Multilateral Operations	NE	NE	NE				NE,
CO2 Emissions from Biomass	NE						NE,
					21		
Total CO2 Equ	IIvalent Emissi	ons without	t Land Use	, Land-Use	Change an	d Forestry	2 869.07
Total CO2	Equivalent Emi	issions with	Land Use	, Land-Use	Change an	d Forestry	NE,

Inventory 2010 Submission 2011 v1.0 Netherlands

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES			CO2 ec	uivalent (Gg	3)		
Total (Net Emissions) (1)	182 487.42	16 749.30	9 695.29	2 087.82	167.97	168.90	211 356.71
1. Energy	176 139.35	2 597.09	824.60				179 561.04
A. Fuel Combustion (Sectoral Approach)	174 559.83	1 748.43	824.60				177 132.86
1. Energy Industries	64 396.47	111.52	258.14				64 766.12
2. Manufacturing Industries and Construction	27 812.80	60.32	29.08				27 902.21
3. Transport	34 071.66	57.38	430.23				34 559.26
4. Other Sectors	IE	IE	IE				IE,
5. Other	48 278.91	1 519.21	107.15				49 905.27
B. Fugitive Emissions from Fuels	1 579.52	848.66	IE,NA,NO				2 428.18
1. Solid Fuels	541.57	20.76	IE				562.33
2. Oil and Natural Gas	1 037.95	827.91	IE				1 865.85
2. Industrial Processes	6 224.35	266.14	1 056.64	2 087.82	167.97	168.90	9 971.82
A. Mineral Products	1 000.95	NO	NE				1 000.95
B. Chemical Industry	3 415.91	230.06	1 050.14				4 696.12
C. Metal Production	1 501.75	IE,NA,NO	NO		IE	IE	1 501.75
D. Other Production	29.75	0.00	0.00				29.75
E. Production of Halocarbons and SF6				IE	IE	IE	IE,
F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	IE,
G. Other	275.98	36.07	6.49	IE	IE	IE	318.55
3. Solvent and Other Product Use	123.72		73.39				197.10
4. Agriculture		9 445.99	7 267.21				16 713.20
A. Enteric Fermentation		6 540.14					6 540.14
B. Manure Management		2 905.85	997.41				3 903.26
C. Rice Cultivation		NO					NO,
D. Agricultural Soils(3)		NE,NO	6 269.80				6 269.80
E. Prescribed Burning of Savannas		NE	NE				NE,
F. Field Burning of Agricultural Residues		NO	NO				NO,
G. Other		NE	NE				NE,
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE,
A. Forest Land	NE	NE	NE				NE,
B. Cropland	NE	NE	NE				NE,
C. Grassland	NE	NE	NE				NE,
D. Wetlands	NE	NE	NE				NE,
E. Settlements	NE	NE	NE				NE,
F. Other Land	NE	NE	NE				NE,
G. Other	NE	NE	NE				NE,
6. Waste	IE,NA,NO,	4 440.08	473.46				4 913.54
A. Solid Waste Disposal on Land	NA,NO	4 212.33	0.00				4 212.33
B. Waste-water Handling		207.34	438.04				645.38
C. Waste Incineration	IE	IE	IE				IE,
D. Other	NA	20.41	35.42				55.83
7. Other (as specified in Summary 1.A)	NE	NE	NE	NE	NE	NE	NE,
Memo Items: (4)							
Internetional Bunkers		NE					
	NE	NE	NE				INE,
Marino							INE,
	NE	NE	NE				NE,
CO2 Emissions from Biomass	NE	NE	NE				INE,
	NE						INE,
Total	CO2 Equivaler	nt Emissions w	ithout Land Us	se, Land-Use	e Change ar	nd Forestrv	211 356.71
Т	otal CO2 Equiva	alent Emission	s with Land Us	se, Land-Use	Change ar	nd Forestry	NE,

The Netherlands provided its own early estimate for 2010 (see Table 5). This estimate has been used to assess progress towards targets.

Inventory 2010 Submission 2011 v1.0 Poland

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES			CO2 e	equivalent (G	ig)		
Total (Net Emissions) (1)	324 925.77	34 618.21	27 358.06	4 135.72	28.56	40.58	391 106.89
1. Energy	302 775.12	14 646.64	2 077.12				319 498.88
A. Fuel Combustion (Sectoral Approach)	302 570.28	3 020.24	2 076.92				307 667.45
1. Energy Industries	171 715.86	77.19	829.53				172 622.58
2. Manufacturing Industries and Construction	33 012.51	76.35	230.65				33 319.51
3. Transport	46 235.72	122.56	581.82				46 940.11
4. Other Sectors	IE	IE	IE				IE,
5. Other	51 606.19	2 744.14	434.91				54 785.24
B. Fugitive Emissions from Fuels	204.84	11 626.40	0.20				11 831.44
1. Solid Fuels	1.34	7 133.65	IE				7 134.99
2. Oil and Natural Gas	203.50	4 492.75	IE				4 696.24
2. Industrial Processes	21 301.35	351.49	1 101.19	4 135.72	28.56	40.58	26 958.89
A. Mineral Products	8 931.40	NA	NE				8 931.40
B. Chemical Industry	3 872.12	234.42	1 088.02				5 194.56
C. Metal Production	7 421.96	117.07	13.17		IE	IE	7 552.19
D. Other Production	8.62	0.00	0.00				8.62
E. Production of Halocarbons and SF6				IE	IE	IE	IE,
F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	IE,
G. Other	1 067.25	NO	NO	IE	IE	IE	1 067.25
3. Solvent and Other Product Use	618.31		124.00				742.31
4. Agriculture		12 091.20	22 932.68				35 023.89
A. Enteric Fermentation		8 923.82					8 923.82
B. Manure Management		3 135.80	5 082.42				8 218.22
C. Rice Cultivation		NA,NO					NA,NO,
D. Agricultural Soils(3)		NA	17 833.05				17 833.05
E. Prescribed Burning of Savannas		NE	NE				NE,
F. Field Burning of Agricultural Residues		31.58	17.22				48.80
G. Other		NE	NE				NE,
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE,
A. Forest Land	NE	NE	NE				NE,
B. Cropland	NE	NE	NE				NE,
C. Grassland	NE	NE	NE				NE,
D. Wetlands	NE	NE	NE				NE,
E. Settlements	NE	NE	NE				NE,
F. Other Land	NE	NE	NE				NE,
G. Other	NE	NE	NE				NE,
6. Waste	230.99	7 528.87	1 123.06				8 882.93
A. Solid Waste Disposal on Land	NA,NO	6 424.75	0.00				6 424.75
B. Waste-water Handling		1 104.12	1 114.06				2 218.18
C. Waste Incineration	230.99	NA	9.01				240.00
D. Other	NO	NO	NO				NO,
7. Other (as specified in Summary 1.A)	NE	NE	NE	NE	NE	NE	NE,
Memo Items: (4)							
International Bunkers	NE	NE	NE				NE,
Aviation	NE	NE	NE				NE,
Marine	NE	NE	NE				NE,
Multilateral Operations	NE	NE	NE				NE,
CO2 Emissions from Biomass	NE						NE,
То	otal CO2 Equival	ent Emissions	without Land	Use, Land-U	lse Change a	and Forestry	391 106.89
	Total CO2 Equi	valent Emissi	ons with Land	Use, Land-U	lse Change a	and Forestry	NE,

Poland provided its own early estimate for 2010 (see Table 5). This estimate has been used to assess progress towards targets.

Inventory 2010 Submission 2011 v1.0 Portugal

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES			CO2	equivalent (0	Gg)		
Total (Net Emissions) (1)	56 805.95	12 253.64	4 546.32	1 174.58	0.00	8.26	74 788.76
1. Energy	52 448.31	855.31	617.06				53 920.68
A. Fuel Combustion (Sectoral Approach)	51 737.16	412.47	614.61				52 764.24
1. Energy Industries	13 907.20	7.58	94.54				14 009.32
2. Manufacturing Industries and Construction	9 504.61	64.45	106.62				9 675.68
3. Transport	18 766.24	30.38	197.08				18 993.70
4. Other Sectors	IE	IE	IE				IE,
5. Other	9 559.10	310.07	216.37				10 085.54
B. Fugitive Emissions from Fuels	711.15	442.84	2.45				1 156.44
1. Solid Fuels	IE,NO	IE,NO	IE				IE,NO,
2. Oil and Natural Gas	711.15	442.84	IE				1 153.99
2. Industrial Processes	4 141.77	11.15	102.10	1 174.58	0.00	8.26	5 437.87
A. Mineral Products	4 026.55	1.81	NE				4 028.36
B. Chemical Industry	92.18	9.34	102.10				203.63
C. Metal Production	22.71	IE,NO	NO		IE	IE	22.71
D. Other Production	0.32	0.00	0.00				0.32
E. Production of Halocarbons and SF6				IE	IE	IE	IE,
F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	IE,
G. Other	NO	NO	NO	IE	IE	IE	IE,NO,
3. Solvent and Other Product Use	215.27		82.29				297.57
4. Agriculture		4 247.82	3 220.74				7 468.57
A. Enteric Fermentation		2 659.76					2 659.76
B. Manure Management		1 152.29	297.68				1 449.97
C. Rice Cultivation		415.57					415.57
D. Agricultural Soils(3)		NE,NO	2 906.03				2 906.03
E. Prescribed Burning of Savannas		NE	NE				NE,
F. Field Burning of Agricultural Residues		20.19	17.03				37.23
G. Other		NE	NE				NE,
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE,
A. Forest Land	NE	NE	NE				NE,
B. Cropland	NE	NE	INE NE				NE,
C. Grassianu	INE	INE	INE				INE,
D. Weilands	INE NE	INE	INE NE				INE,
E. Settlements							INE,
							INE,
G. Other	0.60	7 120 25	524 12				7 664 09
A Solid Waste Disposal on Land	0.00	5 441 13	524.12 NO				5 441 13
R. Waste-water Handling	114	1 608 17	522.62				2 220 70
C Waste Incineration	0.60	0.05	1 50				2 220.79
D. Other	0.00	0.05	NO				2.13 NO
7 Other (as specified in Summary 1 A)	NE	NE	NE	NE	NE	NE	NO,
7. Other (as specified in Summary 1.A)	INL.	NL	INL	INL	INL	NL	INL,
Mama Itams: (1)							
International Bunkers	NE	NE	NE				NE
Aviation	NE	NE	NE				NE
Marine	NE	NE	NE				NF
Multilateral Operations	NE	NE	NE				NE,
CO2 Emissions from Biomass	NF						NF
	146						14L,
Tot	al CO2 Fouival	ent Emissions	without Land	Use, Land-L	Jse Change :	and Forestry	74 788 76
	Total CO2 Equi	valent Emissi	ons with Land	Use, Land-L	Jse Change	and Forestry	NF
				. 550, Euriu-C	see onunge i	and rotootry	·N∟,

Inventory 2010 Submission 2011 v1.0 Romania

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES			CO2 ec	quivalent (O	∋g)		
Total (Net Emissions) (1)	85 615.74	25 608.42	17 920.42	25.12	478.08	7.38	129 655.16
1. Energy	72 836.73	12 018.56	385.61				85 240.90
A. Fuel Combustion (Sectoral Approach)	72 810.87	1 002.80	385.61				74 199.28
1. Energy Industries	36 122.37	12.82	125.74				36 260.93
2. Manufacturing Industries and Construction	12 946.15	25.00	40.12				13 011.27
3. Transport	14 410.99	42.22	37.38				14 490.59
4. Other Sectors	IE	IE	IE				IE,
5. Other	9 331.37	922.76	182.36				10 436.49
B. Fugitive Emissions from Fuels	25.86	11 015.76	NA,NE				11 041.62
1. Solid Fuels	NA,NE	2 451.08	IE				2 451.08
2. Oil and Natural Gas	25.86	8 564.68	IE				8 590.54
2. Industrial Processes	12 648.56	11.60	516.75	25.12	478.08	7.38	13 687.48
A. Mineral Products	4 615.23	NA,NE	NE				4 615.23
B. Chemical Industry	1 708.50	11.60	516.75				2 236.85
C. Metal Production	6 324.83	NA,NE	NA		IE	IE	6 324.83
D. Other Production	NE	0.00	0.00				0.00
E. Production of Halocarbons and SF6				IE	IE	IE	IE,
F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	IE,
G. Other	NA	NA	NA	IE	IE	IE	IE,NA,
3. Solvent and Other Product Use	122.33		NE				122.33
4. Agriculture		7 107.37	16 728.53				23 835.90
A. Enteric Fermentation		5 288.46					5 288.46
B. Manure Management		1 785.14	1 440.50				3 225.64
C. Rice Cultivation		33.77					33.77
D. Agricultural Soils(3)		NA,NE	15 288.04				15 288.04
E. Prescribed Burning of Savannas		NE	NE				NE,
F. Field Burning of Agricultural Residues		NA,NO	NA,NO				NA,NO,
G. Other		NE	NE				NE,
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE,
A. Forest Land	NE	NE	NE				NE,
B. Cropland	NE	NE	NE				NE,
C. Grassland	NE	NE	NE				NE,
D. Wetlands	NE	NE	NE				NE,
E. Settlements	NE	NE	NE				NE,
F. Other Land	NE	NE	NE				NE,
G. Other	NE	NE	NE				NE,
6. Waste	8.12	6 470.89	289.53				6 768.54
A. Solid Waste Disposal on Land	NA	5 579.89	0.00				5 579.89
B. Waste-water Handling		891.00	289.53				1 180.52
C. Waste Incineration	8.12	NE	NE				8.12
D. Other	NA	NA	NA				NA,
7. Other (as specified in Summary 1.A)	NE	NE	NE	NE	NE	NE	NE,
Memo Items: (4)							
International Bunkers	NE	NE	NE				NE,
Aviation	NE	NE	NE				NE,
Marine	NE	NE	NE				NE,
Multilateral Operations	NE	NE	NE				NE,
CO2 Emissions from Biomass	NE						NE,
Total	CO2 Equivalent	Emissions wit	hout Land Us	e, Land-Use	e Change a	nd Forestry	129 655.16
Tot	al CO2 Equiva	lent Emissions	with Land Us	e, Land-Use	e Change a	nd Forestry	NE,

Inventory 2010 Submission 2011 v1.0 Sweden

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES			CO2 6	equivalent	(Gg)		
Total (Net Emissions) (1)	51 717.25	5 199.97	6 407.87	977.41	25.16	82.31	64 409.97
1. Energy	46 510.96	492.88	1 439.20				48 443.05
A. Fuel Combustion (Sectoral Approach)	45 610.46	474.70	1 435.11				47 520.27
1. Energy Industries	11 493.99	107.29	541.20				12 142.49
2. Manufacturing Industries and Construction	11 423.54	47.00	637.22				12 107.76
3. Transport	20 452.30	27.41	162.18				20 641.90
4. Other Sectors	IE	IE	IE				IE,
5. Other	2 240.62	292.99	94.50				2 628.12
B. Fugitive Emissions from Fuels	900.51	18.18	4.09				922.78
1. Solid Fuels	7.92	0.00	IE				7.92
2. Oil and Natural Gas	892.59	18.17	IE				910.76
2. Industrial Processes	4 922.97	11.60	419.27	977.41	25.16	82.31	6 438.72
A. Mineral Products	2 024.40	NA	NE				2 024.40
B. Chemical Industry	57.69	5.33	339.87				402.89
C. Metal Production	2 840.88	0.11	NA,NO		IE	IE	2 840.99
D. Other Production	NE	6.16	79.39				85.56
E. Production of Halocarbons and SF6				IE	IE	IE	IE,
F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	IE,
G. Other	NO	NO	NO	IE	IE	IE	IE,NO,
3. Solvent and Other Product Use	174.94		123.04				297.98
4. Agriculture		3 133.83	4 262.82				7 396.65
A. Enteric Fermentation		2 670.02					2 670.02
B. Manure Management		463.81	436.03				899.84
C. Rice Cultivation		NO					NO,
D. Agricultural Soils(3)		NO	3 826.79				3 826.79
E. Prescribed Burning of Savannas		NE	NE				NE,
F. Field Burning of Agricultural Residues		NO	NO				NO,
G. Other		NE	NE				NE,
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE,
A. Forest Land	NE	NE	NE				NE,
B. Cropland	NE	NE	NE				NE,
C. Grassland	NE	NE	NE				NE,
D. Wetlands	NE	NE	NE				NE,
E. Settlements	NE	NE	NE				NE,
F. Other Land	NE	NE	NE				NE,
G. Other	NE	NE	NE				NE,
6. Waste	108.37	1 561.65	163.55				1 833.58
A. Solid Waste Disposal on Land	NO	1 263.86	0.00				1 263.86
B. Waste-water Handling		297.77	158.40				456.17
C. Waste Incineration	108.37	0.02	5.15				113.54
D. Other	NA	NA	NA				NA,
7. Other (as specified in Summary 1.A)	NE	NE	NE	NE	NE	NE	NE,
Memo Items: (4)							
International Bunkers	NE	NE	NE				NE,
Aviation	NE	NE	NE				NE,
Marine	NE	NE	NE				NE,
Multilateral Operations	NE	NE	NE				NE,
CO2 Emissions from Biomass	NE						NE,
Total CO2 Equivalent Emissions without Land Use, Land-Use Change and Forestry							64 409.97
Total C	O2 Equivalent	Emissions w	vith Land Use	e, Land-Use	e Change ar	nd Forestry	NE,

Inventory 2010 Submission 2011 v1.0 Slovenia

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES			CO2	equivalent	(Gg)		
Total (Net Emissions) (1)	16 418.54	1 978.60	1 147.63	126.80	5.85	13.21	19 690.62
1. Energy	15 678.94	390.81	183.96				16 253.71
A. Fuel Combustion (Sectoral Approach)	15 597.78	111.09	183.96				15 892.83
1. Energy Industries	6 175.97	2.40	27.42				6 205.79
2. Manufacturing Industries and Construction	1 836.83	5.22	27.37				1 869.42
3. Transport	5 188.70	9.95	82.80				5 281.45
4. Other Sectors	IE	IE	IE				IE,
5. Other	2 396.28	93.51	46.38				2 536.17
B. Fugitive Emissions from Fuels	81.15	279.73	NA,NO				360.88
1. Solid Fuels	81.15	249.37	IE				330.52
2. Oil and Natural Gas	0.00	30.36	IE				30.36
2. Industrial Processes	734.99	4.38	0.00	126.80	5.85	13.21	885.23
A. Mineral Products	546.61	NA	NE				546.61
B. Chemical Industry	0.83	4.38	0.00				5.21
C. Metal Production	187.55	NA,NO	NO		IE	IE	187.55
D. Other Production	NA	0.00	0.00				0.00
E. Production of Halocarbons and SF6				IE	IE	IE	IE,
F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	IE,
G. Other	NA	NA	NA	IE	IE	IE	IE,NA,
3. Solvent and Other Product Use	NA,NE,NO		34.23				34.23
4. Agriculture		1 086.71	870.35				1 957.06
A. Enteric Fermentation		666.34					666.34
B. Manure Management		420.37	147.92				568.29
C. Rice Cultivation		NO					NO,
D. Agricultural Soils(3)		NO	722.44				722.44
E. Prescribed Burning of Savannas		NE	NE				NE,
F. Field Burning of Agricultural Residues		NA,NO	NA,NO				NA,NO,
G. Other		NE	NE				NE,
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE,
A. Forest Land	NE	NE	NE				NE,
B. Cropland	NE	NE	NE				NE,
C. Grassland	NE	NE	NE				NE,
D. Wetlands	NE	NE	NE				NE,
E. Settlements	NE	NE	NE				NE,
F. Other Land	NE	NE	NE				NE,
G. Other	NE	NE	NE				NE,
6. Waste	4.61	496.69	59.09				560.39
A. Solid Waste Disposal on Land	NA,NO	337.34	0.00				337.34
B. Waste-water Handling		159.35	59.01				218.36
C. Waste Incineration	4.61	NA,NO	0.08				4.69
D. Other	NA	NA	NA				NA,
7. Other (as specified in Summary 1.A)	NE	NE	NE	NE	NE	NE	NE,
Memo Items: (4)							
International Bunkers	NE	NE	NE				NE,
Aviation	NE	NE	NE				NE,
Marine	NE	NE	NE				NE,
Multilateral Operations	NE	NE	NE				NE,
CO2 Emissions from Biomass	NE						NE,
Total C	O2 Equivalent	Emissions v	vithout Land	Use, Land-U	Jse Change a	and Forestry	19 690.62
Tota	al CO2 Equival	ent Emissior	ns with Land	Use, Land-U	Jse Change a	and Forestry	NE,

Inventory 2010 Submission 2011 v1.0 Slovakia

GREENHOUSE GAS SOURCE AND	CO2 (1) CH4 N2O HFCs (2) PFCs (2) SF6 (2)						Total					
SINK CATEGORIES	CO2 equivalent (Gg)											
Total (Net Emissions) (1)	35 893.79	4 261.10	3 512.77	308.53	31.34	19.77	44 027.31					
1. Energy	27 002.10	1 256.03	152.32				28 410.45					
A. Fuel Combustion (Sectoral Approach)	27 002.10	180.09	152.32				27 334.51					
1. Energy Industries	9 101.04	5.28	34.59				9 140.91					
2. Manufacturing Industries and Construction	6 643.85	15.94	20.62				6 680.40					
3. Transport	7 199.30	15.75	86.89				7 301.94					
4. Other Sectors	IE	IE	IE				IE,					
5. Other	4 057.91	143.12	10.22				4 211.25					
B. Fugitive Emissions from Fuels	0.00	1 075.94	0.00				1 075.94					
1. Solid Fuels	NA,NO	328.61	IE				328.61					
2. Oil and Natural Gas	0.00	747.34	IE				747.34					
2. Industrial Processes	8 799.70	22.92	1 200.62	308.53	31.34	19.77	10 382.89					
A. Mineral Products	2 225.29	NA	NE				2 225.29					
B. Chemical Industry	763.12	22.83	1 200.62				1 986.57					
C. Metal Production	5 811.29	0.10	NA		IE	IE	5 811.38					
D. Other Production	NO	0.00	0.00				0.00					
E. Production of Halocarbons and SF6				IE	IE	IE	IE,					
F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	IE,					
G. Other	NA	NA	NA	IE	IE	IE	IE,NA,					
3. Solvent and Other Product Use	86.99		74.59				161.58					
4. Agriculture		975.85	1 959.26				2 935.11					
A. Enteric Fermentation		856.45					856.45					
B. Manure Management		119.40	366.10				485.50					
C. Rice Cultivation		NA,NO					NA,NO,					
D. Agricultural Soils(3)		NO	1 593.15				1 593.15					
E. Prescribed Burning of Savannas		NE	NE				NE,					
F. Field Burning of Agricultural Residues		NA,NO	NA,NO				NA,NO,					
G. Other		NE	NE				NE,					
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE,					
A. Forest Land	NE	NE	NE				NE,					
B. Cropland	NE	NE	NE				NE,					
C. Grassland	NE	NE	NE				NE,					
D. Wetlands	NE	NE	NE				NE,					
E. Settlements	NE	NE	NE				NE,					
F. Other Land	NE	NE	NE				NE,					
G. Other	INE		105.00				NE,					
A Solid Waste Dispagal on Land	5.00	2 000.29	125.99				2 137.20					
A. Solid Waste Disposal off Land	IE,NO	1 364.45	0.00				1 304.43					
B. Waste-water Handling	5.00	304.00	00.11				424.71					
C. Waste inclineration	5.00	57.24	62.32				120.60					
D. Other (as an actived in Summary 1.4)	NO	57.24	03.30	NE	NE	NE	120.00					
7. Other (as specified in Summary 1.A)	NE	NE	NE	NE	NE	NE	N⊑,					
Mama Hama (4)												
International Runkors	NE	NE	NE				NE					
Aviation		NE					NE,					
Marine		NE					NE,					
Multilateral Operations		NE	NE				INE,					
CO2 Emissions from Biomass	NE	NE	NE				INE,					
	NE						NE,					
Total CO3	Equivalant Emir	eeione withou	it Land Lles	Land-Lico C	hango org	Eorectra	11 007 04					
Total CO2		missions withou	h Land Lloo	Land-Lise C	hange and		44 UZ1.31					
Total C	Oz Equivalent E	.mssions wit	n Lanu USe,	Lanu-Use C	Total CO2 Equivalent Emissions with Land Use, Land-Use Change and Forestry							

Inventory 2010 Submission 2011 v1.0 United Kingdom

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES	CO2 equivalent (Gg)						
Total (Net Emissions) (1)	495 480.27	43 151.38	33 015.07	11 000.87	147.07	580.03	583 374.69
1. Energy	480 317.38	9 449.97	4 508.54				494 275.89
A. Fuel Combustion (Sectoral Approach)	475 480.10	1 126.04	4 471.61				481 077.75
1. Energy Industries	182 897.65	247.66	1 335.87				184 481.17
2. Manufacturing Industries and Construction	70 099.82	224.91	1 160.42				71 485.14
3. Transport	117 222.13	93.75	1 270.08				118 585.96
4. Other Sectors	IE	IE	IE				IE,
5. Other	105 260.51	559.72	705.25				106 525.47
B. Fugitive Emissions from Fuels	4 837.28	8 323.93	36.93				13 198.14
1. Solid Fuels	194.60	2 922.81	IE				3 117.40
Oil and Natural Gas	4 642.68	5 401.12	IE				10 043.80
2. Industrial Processes	14 883.25	94.68	1 063.71	11 000.87	147.07	580.03	27 769.63
A. Mineral Products	5 947.01	5.00	NE				5 952.02
B. Chemical Industry	2 721.33	75.46	1 057.64				3 854.44
C. Metal Production	6 214.91	14.22	6.07		IE	IE	6 235.19
D. Other Production	NE	0.00	0.00				0.00
E. Production of Halocarbons and SF6				IE	IE	IE	IE,
F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	IE,
G. Other	NA	NA	NA	IE	IE	IE	IE,NA,
3. Solvent and Other Product Use	NE		NE,NO				NE,NO,
4. Agriculture		17 907.68	26 020.42				43 928.10
A. Enteric Fermentation		15 146.07					15 146.07
B. Manure Management		2 761.62	1 962.91				4 724.53
C. Rice Cultivation		NA,NO					NA,NO,
D. Agricultural Soils(3)		IE,NA,NE	24 057.51				24 057.51
E. Prescribed Burning of Savannas		NE	NE				NE,
F. Field Burning of Agricultural Residues		NA,NO	NA,NO				NA,NO,
G. Other		NE	NE				NE,
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE,
A. Forest Land	NE	NE	NE				NE,
B. Cropland	NE	NE	NE				NE,
C. Grassland	NE	NE	NE				NE,
D. Wetlands	NE	NE	NE				NE,
E. Settlements	NE	NE	NE				NE,
F. Other Land	NE	NE	NE				NE,
G. Other	NE	NE	NE				NE,
6. Waste	279.63	15 699.05	1 422.39				17 401.08
A. Solid Waste Disposal on Land	NA,NE,NO	15 363.32	0.00				15 363.32
B. Waste-water Handling		333.36	1 379.58				1 712.94
C. Waste Incineration	279.63	2.37	42.81				324.82
D. Other	NA	NA	NA				NA,
7. Other (as specified in Summary 1.A)	NE	NE	NE	NE	NE	NE	NE,
Memo Items: (4)							
International Bunkers	NE	NE	NE				NE,
Aviation	NE	NE	NE				NE,
Marine	NE	NE	NE				NE,
Multilateral Operations	NE	NE	NE				NE,
CO2 Emissions from Biomass	NE						NE,
	T (1000 E)		54 A L				500 07 (55
	Total CO2 Equi	valent Emissio	ns without Lan	d Use, Land-L	Jse Change a	and Forestry	583 374.69
	Total CO2 E	quivalent Emis	sions with Lane	d Use, Land-l	Jse Change a	and Forestry	NE,

United Kingdom provided its own early estimate for 2010 (see Table 5). This estimate has been used to assess progress towards targets.

Inventory 2010 Submission 2011 v1.0 EU-15

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES	CO2 equivalent (Gg)						
Total (Net Emissions) (1)	3 156 139.13	305 515.37	274 583.44	67 299.60	1 865.55	5 781.77	3 811 184.86
1. Energy	2 978 562.51	42 485.93	29 090.96				3 050 139.40
A. Fuel Combustion (Sectoral Approach)	2 960 012.19	12 728.66	28 985.63				3 001 726.48
1. Energy Industries	1 037 268.29	2 683.57	8 795.06				1 048 746.92
Manufacturing Industries and Construction	494 041.64	1 518.52	6 125.58				501 685.74
3. Transport	798 428.10	1 163.72	7 751.13				807 342.95
4. Other Sectors	IE	IE	IE				IE,
5. Other	630 274.17	7 362.85	6 313.85				643 950.87
B. Fugitive Emissions from Fuels	18 550.32	29 757.27	105.32				48 412.92
1. Solid Fuels	745.27	7 678.39	IE				8 423.66
Oil and Natural Gas	17 805.05	22 078.88	IE				39 883.93
2. Industrial Processes	169 390.44	606.34	22 963.67	67 299.60	1 865.55	5 781.77	267 907.36
A. Mineral Products	91 741.56	6.813909607	NE				91 748.38
B. Chemical Industry	29 852.45	440.32	22856.00812				53 148.78
C. Metal Production	47 457.69	116.97	21.78		IE	IE	47 596.43
D. Other Production	31.99543948	6.16	79.39				117.5515109
E. Production of Halocarbons and SF6				IE	IE	IE	IE,
F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	IE,
G. Other	306.74	36.07380077	6.49047	IE	IE	IE	349.31
3. Solvent and Other Product Use	5785.95		3532.548033				9318.50
4. Agriculture		166 651.38	207 297.86				373 949.23
A. Enteric Fermentation		122 352.65					122 352.65
B. Manure Management		41 431.30	21 307.70				62 739.00
C. Rice Cultivation		2 447.45					2 447.45
D. Agricultural Soils(3)		8.736210881	185 895.69				185 904.43
E. Prescribed Burning of Savannas		NE	NE				NE,
F. Field Burning of Agricultural Residues		411.23	94.46				505.70
G. Other		NE	NE				NE,
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE,
A. Forest Land	NE	NE	NE				NE,
B. Cropland	NE	NE	NE				NE,
C. Grassland	NE	NE	NE				NE,
D. Wetlands	NE	NE	NE				NE,
E. Settlements	NE	NE	NE				NE,
F. Other Land	NE	NE	NE				NE,
G. Other	NE	NE	NE				NE,
6. Waste	2 400.23	95 771.72	11 698.41				109 870.37
A. Solid Waste Disposal on Land	11.32	83 528.76	1.17				83 541.26
B. Waste-water Handling		10 043.88	10 467.25				20 511.13
C. Waste Incineration	2 359.78	484.95	270.09				3 114.81
D. Other	29.14	1 714.13	959.90				2703.17
7. Other (as specified in Summary 1.A)	NE	NE	NE	NE	NE	NE	NE,
Memo Items: (4)							
International Bunkers	NE	NE	NE				NE,
Aviation	NE	NE	NE				NE,
Marine	NE	NE	NE				NE,
Multilateral Operations	NE	NE	NE				NE,
CO2 Emissions from Biomass	NE						NE,
	Total CO2	Equivalent Emi	ssions without L	and Use, Land	-Use Change	and Forestry	3 811 184.86
	Total C	O2 Equivalent E	missions with L	and Use, Land	-Use Change	and Forestry	NE,

The estimates at the level of sub-sector and gas in this table have been compiled according to the methodology described in Annex I. The EU early estimates are based on a bottom up approach (by sector, gas and country). The uncertainty in the numbers increases at finer levels of detail, particularly for non-CO₂ emissions. The uncertainty is lowest for CO₂ emissions from energy combustion. Sector 1A5 includes emissions from 1A4.

Inventory 2010 Submission 2011 v1.0 EU-27

GREENHOUSE GAS SOURCE AND	CO2 (1)	CH4	N2O	HFCs (2)	PFCs (2)	SF6 (2)	Total
SINK CATEGORIES	CO2 equivalent (Gg)						
Total (Net Emissions) (1)	3 881 124.69	408 603.77	351 318.59	74 480.97	2 440.08	6 178.61	4 724 146.71
1. Energy	3 639 003.76	81 988.34	34 302.09				3 755 294.19
A. Fuel Combustion (Sectoral Approach)	3 619 999.48	18 579.90	34 196.25				3 672 775.63
1. Energy Industries	1 398 250.74	2 863.48	10 371.01				1 411 485.22
2. Manufacturing Industries and Construction	576 904.69	1 715.35	6 574.05				585 194.09
3. Transport	917 147.84	1 450.01	9 822.67				928 420.51
4. Other Sectors	IE	IE	IE				IE,
5. Other	727 696.22	12 551.07	7 428.53				747 675.81
B. Fugitive Emissions from Fuels	19 004.28	63 408.44	105.84				82 518.56
1. Solid Fuels	827.77	23 579.41	IE				24 407.17
Oil and Natural Gas	18 176.51	39 829.03	IE				58 005.55
2. Industrial Processes	231 961.56	1 104.73	28 685.97	74 480.97	2 440.08	6 178.61	344 851.92
A. Mineral Products	116 366.62	10.43868817	NE				116 377.06
B. Chemical Industry	39 093.33	762.58	28565.14005				68 421.04
C. Metal Production	74 286.92	289.48	34.94		IE	IE	74 611.35
D. Other Production	40.61843948	6.16	79.39				126.1745109
E. Production of Halocarbons and SF6				IE	IE	IE	IE,
F. Consumption of Halocarbons and SF6 (2)				IE	IE	IE	IE,
G. Other	2 174.07	36.07380077	6.49047	IE	IE	IE	2 216.63
3. Solvent and Other Product Use	7086.78		4323.341428				11410.12
4. Agriculture		198 850.43	269 856.48				468 706.90
A. Enteric Fermentation		145 815.53					145 815.53
B. Manure Management		49 944.53	30 770.06				80 714.59
C. Rice Cultivation		2 563.69					2 563.69
D. Agricultural Soils(3)		8.736210881	238 940.18				238 948.92
E. Prescribed Burning of Savannas		NE	NE				NE,
F. Field Burning of Agricultural Residues		517.93	146.23				664.16
G. Other	N.F.	NE	NE				NE,
5. Land Use, Land-Use Change and Forestry(1)	NE	NE	NE				NE,
A. Forest Land	NE	NE	NE				NE,
B. Croppiand							INE,
D. Watlanda	NE NE	INE NE	INE NE				NE,
E Sottlomonto	INE NE						INE,
E. Other Land	NE	NE	NE				NE,
G Other	NE	NE	NE				NE,
6 Waste	3 072 50	126 660 27	14 150 71				1/3 883 58
A Solid Waste Disposal on Land	11 32	109 386 34	1 17				109 398 83
B Waste-water Handling	11.52	14 960 97	12 772 67				27 733 64
C. Waste Incineration	3 032 14	485 73	291 76				3 809 63
D Other	29.14	1 827 24	1 085 11				2941 48
7 Other (as specified in Summary 1 A)	NF	1 027.24 NF	NF	NE	NE	NE	2041.40 NF
	142	142			112		IVE,
Memo Items: (4)							
International Bunkers	NE	NE	NE				NE.
Aviation	NE	NE	NE				NE.
Marine	NE	NE	NE				NE.
Multilateral Operations	NE	NE	NE				NE.
CO2 Emissions from Biomass	NE						NE,
	Total CO2	Equivalent Emis	sions without La	nd Use, Land-	Use Change a	and Forestrv	4 724 146.71
	Total CC	2 Equivalent Er	missions with La	nd Use, Land-	Use Change a	and Forestry	NE,

The estimates at the level of sub-sector and gas in this table have been compiled according to the methodology described in Annex I. The EU early estimates are based on a bottom up approach (by sector, gas and country). The uncertainty in the numbers increases at finer levels of detail, particularly for non-CO₂ emissions. The uncertainty is lowest CO₂ emissions from energy combustion. Sector 1A5 includes emissions from 1A4.